Abstract
We present a new technique for noninvasively tracing brain white matter fiber tracts using diffusion tensor magnetic resonance imaging (DT-MRI). This technique is based on performing diffusion simulations over a series of overlapping three dimensional diffusion kernels that cover only a small portion of the human brain volume and are geometrically centered upon selected starting voxels where a seed is placed. Synthetic and real DT-MRI data are employed to demonstrate the tracking scheme. It is shown that the synthetic tracts can be accurately replicated, while several major white matter fiber pathways in the human brain can be reproduced noninvasively as well. The primary advantages of the algorithm lie in the handling of fiber branching and crossing and its seamless adaptation to the platform established by new imaging techniques, such as high angular, q-space, or generalized diffusion tensor imaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber trac- tography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)
Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, B.H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. 96, 10422–10427 (1999)
Gössl, C., Fahrmeir, L., Pütz, B., Auer, L.M., Auer, D.P.: Fiber tracking from DTI using linear state space models: detectability of the pyramidal tract. NeuroImage 16, 378–388 (2002)
Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34, 910–914 (1995)
Hagmann, P., Thiran, J.P., Jonasson, L., Vandergheynst, P., Clarke, S., Maeder, P., Meuli, R.: DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection. NeuroImage 19, 545–554 (2003)
Jones, D.K., Horsefield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42, 515–525 (1999)
Jones, D.K., Simmons, A., Williams, S.C.R., Horsfield, M.A.: Non-invasive assess- ment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn. Reson. Med. 42, 37–41 (1999)
Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A., Alexander, A.L.: White matter tractography using diffusion tensor deflection. Human Brain Mapping 18, 306–321 (2003)
Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-Gaussian diffu- sion by using generalized diffusion tensors. Magn. Reson. Med. 51, 924–937 (2004)
Mori, S., Crain, B., Chacko, V.P., van Zijl, P.C.M.: Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. of Neurol. 45, 265–269 (1999)
Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)
Parker, G.J.M., Alexander, D.C.: Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 684–695. Springer, Heidelberg (2003)
Parker, G.J.M., Wheeler-Kingshott, C.A.M., Barker, G.J.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans. Med. Imag. 21, 505–512 (2002)
Pierpaoli, C., Basser, P.J.: Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med. 36, 893–906 (1996)
Poupon, C., Clark, C.A., Frouin, V., Regis, J., Bloch, I., Le Bihan, D., Mangin, J.: Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. NeuroImage 12, 184–195 (2000)
Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the pres- ence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)
Tournier, J.-D., Calamante, F., Gadian, D.G., Connelly, A.: Diffusion-weighted magnetic resonance imaging fibre tracking using a front evolution algorithm. Neu- roImage 20, 276–288 (2003)
Westin, C.-F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Med. Imag. Anal. 6, 93–108 (2002)
Wiegell, M.R., Larsson, H.B., Wedeen, V.J.: Fiber crossing in human brain de- picted with diffusion tensor MR imaging. Radiology 217, 897–903 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, J., Kang, N., Rose, S.E. (2005). Approximating Anatomical Brain Connectivity with Diffusion Tensor MRI Using Kernel-Based Diffusion Simulations. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_6
Download citation
DOI: https://doi.org/10.1007/11505730_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26545-0
Online ISBN: 978-3-540-31676-3
eBook Packages: Computer ScienceComputer Science (R0)