[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fuzzy Relational Neural Network for Data Analysis

  • Conference paper
Fuzzy Logic and Applications (WILF 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2955))

Included in the following conference series:

Abstract

In this paper, a Fuzzy Neural Network based on a fuzzy relational “IF-THEN” reasoning scheme (FRNN) is described. Different experiments on benchmark data from the UCI repository of Machine learning database are proposed for classification and approximation tasks. The model is compared with some other methods known in literature pointing out the fundamental features of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.M.: Neural Networks for Pattern recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  2. Ciaramella, A., Tagliaferri, R., Pedrycz, W.: Fuzzy Relations Neural Network. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, December 2001, 287

    Google Scholar 

  3. Ciaramella, A., Tagliaferri, R., Pedrycz, W., Di Nola, A.: Fuzzy Relational Neural Networks, submitted to IEEE Tran. on Neural Networks

    Google Scholar 

  4. Ciaramella, A.: Soft Computing Methodologies for Data Analysis, PhD Thesis, DMI - University of Salerno, Italy (2002)

    Google Scholar 

  5. Jang, J.S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing (A Computational Approach to Learning and Machine Intelligence). Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  6. Lin, C.T., Lee, C.S.G.: Neural Fuzzy Systems: a Neuro-fuzzy Synergism to Intelligent Systems. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  7. Nauck, D., Kruse, R.: NEFCLASS - a Neuro-Fuzzy Approach for the Classification of Data. In: George, K.M., Carrol, J.H., Deaton, E., Oppenheim, D., Hightower, J. (eds.) Applied Computing 1995, Proc. of the 1995 ACM Symposium on Applied Compurintg, February 26-28, ACM Press, New York (1995)

    Google Scholar 

  8. Nauck, D., Nauck, U., Kruse, R.: Generating Classification Rules with the Neuro- Fuzzy System NEFCLASS. In: Proc. Biennal. Conf. of the North America Fuzzy Information Processing Society (NAFIPS 1996), Berkeley, CA (1996)

    Google Scholar 

  9. Nabney, I.T.: Netlab Algorithms for Pattern Recognition. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  10. Pedrycz, W.: Fuzzy Control and Fuzzy Systems, 2nd, extended, edn. John Wiley and Sons, New York (1993)

    MATH  Google Scholar 

  11. Prechelt, L.: PROBEN 1 - A Set of Neural Network Benchmark Problems and Benchmarking Rules, Technical Report, 21/94, September 30 (1994)

    Google Scholar 

  12. Tagliaferri, R., Ciaramella, A., Di Nola, A.: Radim Bělohlávek, Fuzzy Neural Networks Based on Fuzzy Logic Algebras Valued Relations (accepted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ciaramella, A., Tagliaferri, R., Pedrycz, W., Di Nola, A. (2006). Fuzzy Relational Neural Network for Data Analysis. In: Di Gesú, V., Masulli, F., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2003. Lecture Notes in Computer Science(), vol 2955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10983652_14

Download citation

  • DOI: https://doi.org/10.1007/10983652_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31019-8

  • Online ISBN: 978-3-540-32683-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics