[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ERAF: A R Package for Regression and Forecasting

  • Conference paper
Biological and Artificial Intelligence Environments

Abstract

We present a package for R language containing a set of tools for regression using ensembles of learning machines and for time series forecasting. The package contains implementations of Bagging and Adaboost for regression, and algorithms for computing mutual information, autocorrelation and false nearest neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abarbanel, H.D.I. Analysis of Observed Chaotic Data. Springer, New York, 1996.

    MATH  Google Scholar 

  • Becker, R.A. and Chambers, J.M. Design of the S System for Data Analysis. Comm. A.C.M., 27:5 pp. 486–495, 1984.

    Google Scholar 

  • Breiman, L. Bagging predictors. Machine Learning, 24:123–140, 1996.

    MATH  MathSciNet  Google Scholar 

  • Chang, C.C. and Lin, C.J. Training ν-support vector classifiers: Theory and algorithms. Neural Computation, 13(9):2119–2147, 2001.

    Article  MATH  Google Scholar 

  • Chang, C.C. and Lin, C.J. Training ν-support vector regression: Theory and algorithms. Neural Computation, 14(8):1959–1977, 2002.

    Article  MATH  Google Scholar 

  • Cortes, C. and Vapnik, V. Support Vector Networks. Machine Learning, 20:273–297, 1995.

    MATH  Google Scholar 

  • Domingos, P. A Unified Bias-Variance Decomposition for Zero-One and Squared Loss In Proceedings of the Seventeenth National Conference on Artificial Intelligence, pages 564–569, Austin, TX, AAAI Press, 2000.

    Google Scholar 

  • Drucker, H. Improving regressors using boosting techniques. In D. H. Fisher, editor, Proceedings of the Fourteenth International Conference on Machine Learning, pages 107–115. Morgan Kaufmann, 1997.

    Google Scholar 

  • Freund, Y. and Schapire, R.E. Experiments with a New Boosting Algorithm. Proceedings of the Thirteenth Conference, ed: L. Saitta, Morgan Kaufmann, pp. 148–156, 1996.

    Google Scholar 

  • Geman, S., Bienenstock, E. and Doursat, R. Neural networks and the bias-variance dilemma. Neural Computation, 4(1):1–58, 1992.

    Article  Google Scholar 

  • Ihaka, R. and Gentleman, R. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

    Article  Google Scholar 

  • Mane, R. On the dimension of the compact invariant sets of certain non-linear maps. In D.A Rand and L. S. Young, editors, Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898 p. 230–242, 1981. Springer-Verlag, Berlin.

    Google Scholar 

  • Nene, S.A. and Nayar, S.K. A simple algorithm for nearest neighbor search in high dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:989–1003, 1997.

    Article  Google Scholar 

  • Ripley, B.D. Pattern Recognition and Neural Networks. Cambridge, 1996.

    Google Scholar 

  • Takens, F. Detecting strange attractors in turbulence. In D.A. Rand and L.-S. Young, editors, Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, pp. 366–381, 1981. Springer-Verlag, Berlin.

    Google Scholar 

  • Vautard, R. and Ghil, M. Singular-spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 35:395–424, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • Vautard, R., You, P., and Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58:95–126, 1992.

    Article  Google Scholar 

  • Valentini, G. and Masulli, F. Ensembles of Learning Machines, in M. Marinaro and R. Tagliaferri, editors, Neural Nets WIRN Vietri-02, Series Lecture Notes in Computer Sciences, Springer-Verlag, Heidelberg (Germany), vol. 2486, pp.3–19, 2002

    Google Scholar 

  • Valentini, G. and Dietterich, T.G. Bias-variance analysis of Support Vector Machines for the development of SVM-based ensemble methods Journal of Machine Learning Research (in press).

    Google Scholar 

  • Vapnik, V.N. Statistical Learning Theory. Wiley, New York, 1998.

    MATH  Google Scholar 

  • Venables, W.N. and Ripley, B.D. Modern Applied Statistics with S. Springer, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Filippone, M., Masulli, F., Rovetta, S. (2005). ERAF: A R Package for Regression and Forecasting. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds) Biological and Artificial Intelligence Environments. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3432-6_20

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3432-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3431-2

  • Online ISBN: 978-1-4020-3432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics