Abstract
In this paper we describe a new method, based on a genetic algorithm, for generating good (in terms of minimum distance) linear block error-correcting codes. We offer a detailed description of the algorithm, with particular regard to the genetic operators (selection, mutation and crossover) which have been specifically adapted to the problem. Preliminary experimental results indicate that the method can be very effective, especially in terms of fast production of good sub-optimal codes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brouwer, A. E. and Verhoeff, T. (1993). An updated table of minimum-distance bounds for binary linear codes. IEEE Transactions on Information Theory, 39(2).
Cardoso, F. A. C. M. and Arantes, D. S. (1999). Genetic decoding of linear block codes. Proceedings of the 1999 Congress on Evolutionary Computation, 3.
Dontas, K. and Jong, K. De (1990). Discovery of maximal distance codes using genetic algorithms. In Proceedings of the 2nd International IEEE Conference on tools for Artificial Intelligence, pages 805–811.
Dumer, I., Micciancio, D., and Sudan, M. (2003). Hardness of approximating the minimum distance of a linear code. IEEE Transactions on Information Theory, 49(1):22–37.
Farkaš, P. and Brühl, K. (1994). Three best binary linear block codes of minimum distance fifteen. IEEE Trans. Inform. Theory, 40:949–951.
Farkaš, P. and Herrera-Garcia, S. (2001). Three new optimal [34,15,9] codes. ElectronicsLetters.com (web journal).
Ferrari, G. and Chugg, K. M. (2003). Linear programming-based optimization of the distance spectrum of linear block codes. IEEE Transactions on Information Theory, 49(7).
Hill, R. and Traynor, K. L. (1990). The nonexistence of certain binary linear codes. IEEE Trans. Inform. Theory, 36:917–922.
Maini, H., Mehrotra, K., Mohan, C., and Ranka, S. (1994). Soft decision decoding of linear block codes using genetic algorithms. Proceedings of the IEEE International 1994 Symposium on Information Theory.
McCluskey, E. J. (1959). Error-correcting codes-a linear programming approach. Bell System Tech. J., 38:1485–1512.
Proakis, J. G. (2001). Digital Communications. McGraw-Hill, New York, 4th edition.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this paper
Cite this paper
Barbieri, A., Cagnoni, S., Colavolpe, G. (2005). Genetic Design of Linear Block Error-Correcting Codes. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds) Biological and Artificial Intelligence Environments. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3432-6_13
Download citation
DOI: https://doi.org/10.1007/1-4020-3432-6_13
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3431-2
Online ISBN: 978-1-4020-3432-9
eBook Packages: Computer ScienceComputer Science (R0)