[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Genetic Design of Linear Block Error-Correcting Codes

  • Conference paper
Biological and Artificial Intelligence Environments

Abstract

In this paper we describe a new method, based on a genetic algorithm, for generating good (in terms of minimum distance) linear block error-correcting codes. We offer a detailed description of the algorithm, with particular regard to the genetic operators (selection, mutation and crossover) which have been specifically adapted to the problem. Preliminary experimental results indicate that the method can be very effective, especially in terms of fast production of good sub-optimal codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brouwer, A. E. and Verhoeff, T. (1993). An updated table of minimum-distance bounds for binary linear codes. IEEE Transactions on Information Theory, 39(2).

    Google Scholar 

  • Cardoso, F. A. C. M. and Arantes, D. S. (1999). Genetic decoding of linear block codes. Proceedings of the 1999 Congress on Evolutionary Computation, 3.

    Google Scholar 

  • Dontas, K. and Jong, K. De (1990). Discovery of maximal distance codes using genetic algorithms. In Proceedings of the 2nd International IEEE Conference on tools for Artificial Intelligence, pages 805–811.

    Google Scholar 

  • Dumer, I., Micciancio, D., and Sudan, M. (2003). Hardness of approximating the minimum distance of a linear code. IEEE Transactions on Information Theory, 49(1):22–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Farkaš, P. and Brühl, K. (1994). Three best binary linear block codes of minimum distance fifteen. IEEE Trans. Inform. Theory, 40:949–951.

    Article  MathSciNet  Google Scholar 

  • Farkaš, P. and Herrera-Garcia, S. (2001). Three new optimal [34,15,9] codes. ElectronicsLetters.com (web journal).

    Google Scholar 

  • Ferrari, G. and Chugg, K. M. (2003). Linear programming-based optimization of the distance spectrum of linear block codes. IEEE Transactions on Information Theory, 49(7).

    Google Scholar 

  • Hill, R. and Traynor, K. L. (1990). The nonexistence of certain binary linear codes. IEEE Trans. Inform. Theory, 36:917–922.

    Article  MathSciNet  MATH  Google Scholar 

  • Maini, H., Mehrotra, K., Mohan, C., and Ranka, S. (1994). Soft decision decoding of linear block codes using genetic algorithms. Proceedings of the IEEE International 1994 Symposium on Information Theory.

    Google Scholar 

  • McCluskey, E. J. (1959). Error-correcting codes-a linear programming approach. Bell System Tech. J., 38:1485–1512.

    MathSciNet  Google Scholar 

  • Proakis, J. G. (2001). Digital Communications. McGraw-Hill, New York, 4th edition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Barbieri, A., Cagnoni, S., Colavolpe, G. (2005). Genetic Design of Linear Block Error-Correcting Codes. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds) Biological and Artificial Intelligence Environments. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3432-6_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3432-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3431-2

  • Online ISBN: 978-1-4020-3432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics