@inproceedings{arase-etal-2023-unbalanced,
title = "Unbalanced Optimal Transport for Unbalanced Word Alignment",
author = "Arase, Yuki and
Bao, Han and
Yokoi, Sho",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.219/",
doi = "10.18653/v1/2023.acl-long.219",
pages = "3966--3986",
abstract = "Monolingual word alignment is crucial to model semantic interactions between sentences. In particular, null alignment, a phenomenon in which words have no corresponding counterparts, is pervasive and critical in handling semantically divergent sentences. Identification of null alignment is useful on its own to reason about the semantic similarity of sentences by indicating there exists information inequality. To achieve unbalanced word alignment that values both alignment and null alignment, this study shows that the family of optimal transport (OT), i.e., balanced, partial, and unbalanced OT, are natural and powerful approaches even without tailor-made techniques. Our extensive experiments covering unsupervised and supervised settings indicate that our generic OT-based alignment methods are competitive against the state-of-the-arts specially designed for word alignment, remarkably on challenging datasets with high null alignment frequencies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arase-etal-2023-unbalanced">
<titleInfo>
<title>Unbalanced Optimal Transport for Unbalanced Word Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Arase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Bao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sho</namePart>
<namePart type="family">Yokoi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Monolingual word alignment is crucial to model semantic interactions between sentences. In particular, null alignment, a phenomenon in which words have no corresponding counterparts, is pervasive and critical in handling semantically divergent sentences. Identification of null alignment is useful on its own to reason about the semantic similarity of sentences by indicating there exists information inequality. To achieve unbalanced word alignment that values both alignment and null alignment, this study shows that the family of optimal transport (OT), i.e., balanced, partial, and unbalanced OT, are natural and powerful approaches even without tailor-made techniques. Our extensive experiments covering unsupervised and supervised settings indicate that our generic OT-based alignment methods are competitive against the state-of-the-arts specially designed for word alignment, remarkably on challenging datasets with high null alignment frequencies.</abstract>
<identifier type="citekey">arase-etal-2023-unbalanced</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.219</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.219/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>3966</start>
<end>3986</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unbalanced Optimal Transport for Unbalanced Word Alignment
%A Arase, Yuki
%A Bao, Han
%A Yokoi, Sho
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F arase-etal-2023-unbalanced
%X Monolingual word alignment is crucial to model semantic interactions between sentences. In particular, null alignment, a phenomenon in which words have no corresponding counterparts, is pervasive and critical in handling semantically divergent sentences. Identification of null alignment is useful on its own to reason about the semantic similarity of sentences by indicating there exists information inequality. To achieve unbalanced word alignment that values both alignment and null alignment, this study shows that the family of optimal transport (OT), i.e., balanced, partial, and unbalanced OT, are natural and powerful approaches even without tailor-made techniques. Our extensive experiments covering unsupervised and supervised settings indicate that our generic OT-based alignment methods are competitive against the state-of-the-arts specially designed for word alignment, remarkably on challenging datasets with high null alignment frequencies.
%R 10.18653/v1/2023.acl-long.219
%U https://aclanthology.org/2023.acl-long.219/
%U https://doi.org/10.18653/v1/2023.acl-long.219
%P 3966-3986
Markdown (Informal)
[Unbalanced Optimal Transport for Unbalanced Word Alignment](https://aclanthology.org/2023.acl-long.219/) (Arase et al., ACL 2023)
ACL
- Yuki Arase, Han Bao, and Sho Yokoi. 2023. Unbalanced Optimal Transport for Unbalanced Word Alignment. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3966–3986, Toronto, Canada. Association for Computational Linguistics.