An Empirical Study of Coding Style Compliance on
Stack Overflow

Qing Mi*, Haotian Bai, Xiaozhou Wang, Wenrui Liu, Xingyue Song
Faculty of Information Technology, Beijing University of Technology, Beijing, China
miqing @bjut.edu.cn,baihaotian20020905 @emails.bjut.edu.cn, Wang-xz @emails.bjut.edu.cn,
wenrui.liu@ucdconnect.ie,sxy 18386137856 @ 163.com

Abstract—Stack Overflow (SO) is one of the world’s largest
technical Q&A websites, in which many posts contain code snip-
pets. However, these code snippets may not comply with coding
style guidelines and result in the problem of low readability and
maintainability. To provide a better understanding of this coding
style compliance issue for SO users, we plan and conduct an
empirical study on SO. Specifically, we collected over 400,000
code snippets from SO in three languages, namely Python, C/C++,
and JavaScript. The posts are divided into two types (i.e., question
and answer) and analyzed separately. We found that for the
question- and answer-type posts, more than 90% and 60%
of code snippets contain style violations. The most frequently
found violation is syntax errors for Python and indentations
for C/C++ and JavaScript. In addition, the results show that
with more violations in code snippets, the ‘“Score” of Python
and C/C++ posts, the “FavoriteCount” of C/C++ questions, and
the “CommentCount” of JavaScript questions tend to be lower.
The findings of our research indicate that code snippets on
SO do not have good coding style compliance. Users, especially
programming beginners are supposed to be wary of the potential
problems of reusing code snippets on SO.

Index Terms—Coding Style Compliance, Stack Overflow, Pro-
gramming Guideline, Stack Exchange

I. INTRODUCTION

Stack Overflow (SO) is a program-related Q&A website.
Software developers use SO to initiate, browse, and answer
questions. As of 2022, SO has 17.16 million registered users
and over 50 million posts, 64% of the posts in SO contain
code snippets [3]. However, these code snippets are not fully
compliant with coding guidelines and are likely to have quality
problems [9], since coding style compliance is highly related
to the readability and maintainability of the source code [4].
Simply copying (or reusing) them may cause errors as well
as software maintenance issues [10]. Currently, there is still a
little research about coding style compliance on SO. Therefore,
we carefully plan an empirical study to bridge this research
gap.

We first collected 106,248 Python code snippets, 98,723
C/C++ code snippets, and 110,304 JavaScript code snippets on
SO. Then, we explore the violation ratio and most frequently
found violation type based on the collected dataset. The ex-
perimental results illustrate that 93.54% Python code snippets,
98.95% JavaScript code snippets, and 91.13% C/C++ code
snippets in question-type posts contain coding style violations,

*Corresponding author.
DOI reference number: 10.18293/SEKE2023-125

while 89.53% Python code snippets, 100% JavaScript code
snippets, and 65.83% C/C++ code snippets in answer-type
posts contain coding style violations. The most frequently
found coding style violation is non-standard space indentation
for JavaScript and C/C++ and syntax error for Python. The
Pearson correlation analysis indicates a moderate negative
correlation (—0.8 < r < —0.6) between the number of
code violations per statement and the “Score” of Python and
C/C++ posts, the “FavoriteCount” of C/C++ questions, and the
“CommentCount” of JavaScript questions.

The findings of our research suggest that the majority of
code snippets on SO do not comply with proper coding style
guidelines. As code violations can decrease readability and
maintainability, developers should be cautious when reusing
code snippets from SO. Especially, users should focus on
syntax errors and inconsistent indentation styles, which con-
stitute the majority of the total violations. In addition, when
raising questions on SO, we suggest that users should pay
more attention to their coding style compliance because a
better coding style tends to receive more comments, and code
snippets with fewer violations have a greater chance to get a
higher “Score”.

II. RELATED WORK

Some previous studies have concentrated on coding style
compliance on Stack Overflow (SO).

The work of Hart et al. [14] sought to ascertain the influence
of social reputation and other aspects on the perception of
answer quality. Their findings suggested that social reputation
had no substantial effect, while the presentation styles of com-
pleteness and conciseness were deemed to be more influen-
tial. The research presented herein elucidates the relationship
between coding style compliance and the quality of posts,
thereby demonstrating the potential for further explorations.

Treude et al. [17] conducted a study of the extent to which
developers appraise SO code snippets as self-explanatory.
Additionally, they probed the information absent from snippets
and judged it not to be self-explanatory. The findings indicated
that fewer than half of the code snippets in the sample were
deemed self-explanatory. The primary coding style problems
that impinge on the understandability of code snippets in-
clude incomplete snippets, code quality, missing rationale,
code organization, clutter, naming issues, and missing domain
information. The findings of their research demonstrate the

deleterious effect that coding style violations have on the
quality of code.

More recently, Bafatakis et al. [18] investigated coding style
compliance in Python code snippets on SO. Their research
focuses on Python code snippets. Their results showed that
93.87% of snippets contain style violations, with an average of
0.7 violations per statement. Additionally, they found that user
reputation seems to be unrelated to coding style compliance.
While there is a strong correlation between the vote “Score”
a post received and the average number of violations per
statement. The authors also mentioned that the choice of
languages and attributes could be expanded in further study.

Our work is an extension of Bafatakis et al.’s study. Based
on their work, this study examines coding style compliance on
SO as well, but with a particular focus on different types of
posts (questions and answers). Furthermore, our research in-
vestigates the compliance of code snippets in more languages,
as well as the types of violations in each language and the
correlation between the violation rate and the attributes of
“Score”, “ViewCount”, “FavoriteCount”, “AnswerCount”, and
“CommentCount”.

III. STUDY DESIGN

In this section, we first present our research questions (RQs).
Then, we select representative programming languages and the
corresponding analysis tools. Next, we retrieve, sort, and filter
Stack Overflow (SO) to construct our dataset. Finally, for each
RQ, we provide a brief introduction of our methodology.

A. Research Questions

To determine the coding style compliance on SO, we
will analyze JavaScript, Python, and C/C++ code snippets to
answer the following RQs:

« RQIl. How many code snippets on SO contain coding

style violations?

o RQ2. Which coding style rules are most frequently bro-

ken on SO?

+ RQ3. Does coding style compliance correlate with SO

attributes?

B. Programming Languages and Code Analysis Tools

In our research, Python, C/C++, and JavaScript were se-
lected as the research objects to ensure a comprehensive study,
since these languages are among the top ten most popular
languages on SO [1], which can provide enough data to
support in-depth research.

Corresponding to the three languages, we chose Pylint, Cp-
plint, and ESLint to check the coding style compliance. In the
case of Python, we selected Pylint! as it is a widely-used tool
that follows the style recommended by PEP 8 (a Python style
guide). Pylint provides a comprehensive set of checks that
analyze code for potential errors and code smells. For C/C++,
we chose Cpplint?, which is based on Google’s coding style
guides and has a strict set of rules (i.e., naming conventions

Thttps://Pylint.pycqa.org/en/latest/
Zhttps://github.com/google/styleguide/blob/gh-pages/cpplint/cpplint.py

and formatting rules) that help developers write consistent and
readable code. Finally, for JavaScript, we selected ESLint?,
which is a popular tool for identifying problematic patterns in
JavaScript code. We chose these specific code analysis tools
based on their ability to analyze code for potential issues
and enforce coding standards. Each tool has its own set of
configurable rules and guidelines that can be customized to
meet the specific needs. Moreover, these tools are widely used
in their respective communities and can provide reliable and
effective code analysis.

C. Dataset Construction

The code snippets used in this study were acquired from
Stack Exchange4, a network of various Q&A websites, with
SO being one of the most actively visited ones.

We extracted question-type posts from July 2008 to Decem-
ber 2021, and their corresponding answers (from July 2008 to
April 2022). The posts are distinguished by tags, e.g., posts
about Python are tagged with “Python”. We retrieved Python,
C/C++, and JavaScript code snippets and built our dataset by
searching and downloading posts with certain tags.

In total, we extracted 106,248 Python code snippets, 98,723
C/C++ code snippets, and 110,304 JavaScript code snippets
from question-type posts, and 40,418 Python code snippets,
44,316 C/C++ code snippets, and 47,463 JavaScript code
snippets from answer-type posts.

Note that our research assumed that SO users have dif-
ferent programming experiences and ability levels; beginner
programmers tend to ask questions (question-type posts) while
experienced programmers prefer providing solutions (answer-
type posts). Such differences may lead to discrepancies in
the degree of coding style compliance. Consequently, we
purposely divided the collected dataset into two subgroups,
namely question-type posts and answer-type posts. Our sub-
sequent analyses were conducted on these separate subgroups
respectively.

D. Analysis Method

In order to answer RQ1, code analysis tools were utilized
to identify coding style violations in the collected Python,
C/C++, and JavaScript code snippets. The violation ratio was
subsequently calculated, which pertains to the number of
coding style violations per statement for each language.

To address RQ2, we first classified hundreds of coding style
violations into several categories according to the websites
of Pylint, Cpplint, and ESLint, as shown in Table II. Al-
though these code analysis tools have different classification
criteria for coding style violations, upon further analysis, we
noticed a significant overlap in violation types across different
programming languages (e.g., unused-import and reimported
in Python, no-duplicate-imports and no-restricted-imports in
JavaScript, build/include and build/include-order in C/C++).
Based on this finding, we decided to consolidate and discuss
some of the most prominent categories of violations, in order

3https://eslint.org/
“https://stackexchange.com/

Select Representative Languages

l

Build The Dataset

l

Identify Questions & Answers

|

Preprocess Dataset

Code Analysis

; Tools

RQ1. Determine the quantitative features of
violations

|

RQ2. Determine the most frequent types of
violations

|

RQ3. Determine the correlation between the
violation per statement and other attributes

Fig. 1: Methodology Overview

to facilitate fair comparison of common violations across
different languages. They are indentation-namespace/name,
include/import, and whitespace/space. The distribution of these
categories is provided in Table III.

The improper naming of variables or functions can be
identified as a “Name” violation. This type of violation is
crucial because clear names can help developers understand
and work with the code better. Failure to follow standard nam-
ing conventions can cause confusion, make debugging harder
and sometimes lead to program errors. Examples of these
violations in Python include duplicate-argument-name (i.e.,
duplicate argument names in function definitions), arguments-
renamed (i.e., a method parameter has a different name than
in the implemented interface or an overridden method), bad-
dunder-name (i.e., a dunder method is misspelled or defined
with a name, not within the predefined list of dunder names),
etc.

“Import” contains violations regarding importing. While
many users might not immediately encounter issues due to
inadequately importing, those who want to reuse code snippets
would likely come up against difficult-to-diagnose bugs caused
by such violations. Examples of this type of violations in
Python include import-self (i.e., a module is importing itself)
and shadowed-import (i.e., a module is aliased with a name
that shadows another import). While in JavaScript, there are
sort-imports (i.e., enforce sorted import declarations within
modules) and no-duplicate-imports (i.e., disallow duplicate
module imports).

“Space” contains violations regarding indentations. In-
dentations play a vital role in readable code, especially
in languages like Python where correct indentation im-

pacts code functionality. As a result, Python tends to
have fewer indentation errors compared to languages such
as C/C++. Common C/C++ indentation violations involve
whitespace/braces, whitespace/comma, whitespace/empty-if-
body, whitespace/semicolon, etc. Although these violations do
not affect program operation and might seem insignificant,
they create cluttered code, making it more challenging for col-
leagues to decipher intent. Thus, the importance of adhering to
the standard of indentations should not be underestimated, as
it can significantly improve the readability and maintainability
of the code.

To answer RQ3, we retrieved five attributes of question-type
posts, i.e., “Score” (the number of upvotes minus downvotes
a post received), “ViewCount” (the number of times a post
was viewed), “FavoriteCount” (the number of times a post was
saved by other users), “AnswerCount” (the number of answers
a post received), and “CommentCount” (the number of com-
ments a post received). Besides, we retrieved two attributes
of answer-type posts, i.e., “Score” and “CommentCount”. We
first used scatter plots to visualize the relationship between
the violation ratio and the attribute values. After that, we
preprocessed the collected data and removed the outliers using
the interquartile range (IQR) method. Our study partitioned
the collected posts into multiple groups based on the variance
in violation ratios with increments of 0.2. Subsequently, the
mean attribute values of each group were computed. The
Pearson correlation coefficient was employed to explore the
relationship between the violation ratio and the mean attribute
values of each group.

IV. EMPIRICAL RESULTS

We present our findings regarding each research question.

A. Results of RQI

As shown in Table I, code snippets without any coding style
violations are uncommonly found in JavaScript. For Python
and C/C++ code snippets, it is noted that the prevalence of
compliant code snippets in answer-type posts outweighs that
in question-type posts. In the case of C/C++ code snippets, the
ratio of compliant code snippets in answer-type posts exceeds
that in question-type posts by 25.31%.

We also calculated the violation ratio. Our analysis revealed
that the violation ratios are significantly elevated across all
three languages, with a particularly pronounced increase in
the case of JavaScript.

In conclusion, more than 80% of the code snippets on Stack
Overflow (SO) contain coding style violations, indicating
that code snippets on SO do not have good coding style
compliance, and it is not recommended to reuse them without
careful inspection.

B. Results of RQ2

Based on the classification method on the official websites
of the code analysis tools, we calculated the proportion of
each category of coding style violations in the three languages.
As shown in Table II, the most frequently found violation is

TABLE I: Coding Style Violations in Question-type and
Answer-type Posts

Code Snippets with Violations Violation Ratio
Question Answer Question | Answer
Python 93.55% 89.53% 0.1196 0.1311
C/C++ 91.14% 65.80% 0.3802 0.3227
JavaScript | 98.95% 100.00% 0.4457 0.5520

syntax error for Python and whitespace/braces for C/C++. For
JavaScript code snippets, the most frequently found violation
is indent (i.e., enforce consistent indentation) for questions and
semi (i.e., require or disallow semicolons instead of ASI) for
answers.

To facilitate further comparison, we identified common
violations in the three languages and subsequently categorized
these violations into three distinct groups. It can be seen in
Table III that a significant number of coding style violations
in C/C++ and JavaScript are related to indentations, whereas
violations in Python code snippets involve a variety of aspects.

The main reason for this difference is the nature and design
of the programming languages. C/C++ and JavaScript are
typically written with curly braces where code blocks are
enclosed in them. Due to the visual clarity produced by these
curly braces, proper indentation is not required for code to
be syntactically correct. Nevertheless, consistent indentation
remains crucial for code legibility and readability. Therefore,
most coding style guidelines for C/C++ and JavaScript empha-
size consistent indentation as the primary formatting guideline.

On the other hand, Python is designed to use indentation to
define its code blocks. This means that indentation is not just
a matter of style, but it is an essential part of the language
syntax. In Python, improper indentation can result in syntax
errors that make the code unexecutable. As a result, Python
coding style guidelines cover multiple aspects of indentation
and whitespace usage, such as the number of spaces per
indentation level, the use of tabs versus spaces, and the use of
whitespace in other contexts such as line breaks and wrapping.

Additionally, Python has a more extensive set of lan-
guage constructs and syntax features compared to C/C++ and
JavaScript. This means that Python coding style guidelines
need to cover a wider range of aspects beyond simple in-
dentation rules, such as variable naming conventions, function
and class definitions, control structures, etc. The goal of these
guidelines is to promote consistency and readability across
Python code, especially in larger and more complex projects.

C. Results of RQ3

Figure 2 displays data on Python posts that are questions.
Most of these posts received a low “Score” and a low violation
ratio. Some posts got a high “Score” with a low violation
ratio, while others got a low “Score” with a high violation
ratio. Only a very small number of posts in this category got
a high “Score” with a high violation ratio. Similar Zipfian
distributions were observed for answer-type posts and posts
in two other languages.

500
400
300
200

100

-100

Fig. 2: Python Code Violation Rate vs. “Score”

We posit that a correlation coefficient surpassing the thresh-
old value of |r| > 0.6,p < 0.01 represents a significant
correlation between the two variables under consideration. Ac-
cordingly, we found that whether a code snippet is compliant
with coding style rules correlated with some SO attributes. For
instance, Figure 3 illustrates that the “Score” for answer-type
C/C++ posts exhibits a moderate correlation with the violation
ratio. The mean values of “Score” have a Pearson correlation
coefficient of r = —0.789, p = 0.002 with the violation ratio.
The result means that for C/C++ questions on SO, the ones
with code snippets following coding style guidelines tend to
receive a higher “Score” than other questions. As shown in
Table IV, similar results were observed across some of the
other attributes.

For JavaScript posts, it can be observed that the correlation
between attribute values and violation ratio is commonly found
to be insignificant, except the “CommentCount” attribute in
questions. The findings of RQ2 indicate that the majority of
violations in JavaScript code do not significantly affect how
the program operates. This may lead users to perceive coding
style violations in JavaScript posts as less important.

It can be noted that violations have a greater impact on
“Score” than other attributes. Users tend to upvote more on
questions and answers with fewer coding style violations and
believe them to be of higher quality. Besides, we noticed that
the violation ratio of question-type C/C++ posts is negatively
correlated with “FavoriteCount”.

At this time, there is no conclusive evidence proving that
coding style violations significantly affect users’ browsing,
commenting and answering behaviors. As all “ViewCount”,
“AnswerCount” and answers’ “CommentCount” exhibit weak
correlation (Jr| < 0.6) with the violation ratio, as shown in
Table IV, which means that under certain circumstances, users
seem to pay less attention to the coding style compliance. It
is possible that users are willing to overlook minor coding
style violations if the code is otherwise useful or valuable to
them. They may prioritize the benefits of the code over its
compliance with coding style guidelines.

TABLE II: Proportion of Each Category of Coding Style Violations

Python Violation Types C/C++ Violation Types JavaScript Violation Types
1 Refactor for a ”good practice” 5.70% 1 build: builds when 3.16% 1 Possible Errors: Rules related to possible syntax 0.32%
metric violation the error or logic errors in JavaScript code
2 Convention for coding stan- 28.14% | 2 readability: read- 4.16% 2 Best Practices: Rules related to better ways of 4.07%
dard violation ability error doing things to help you avoid problems
3 Warning for stylistic problems, 32.53% | 3 runtime: runtime 3.70% 3 Parsing error: parsing error 5.76%
or minor programming issues error
4 Error for important program- 33.61% | 4 whitespace: space 88.98% | 4 Variables: Rules related to variable declarations 0.01%
ming issues indentation error
5 Fatal for errors which pre- 0.02% 5 Node.js and Common]S: Rules related to code 0.01%
vented further processing running in Node.js, or in browsers with Com-
monJS
6 Informational messages that 0.00% 6 Stylistic Issues: Rules related to style guidelines, 82.75%
Pylint emits and are therefore quite subjective
7 ECMAScript 6: Rules related to ES6, also 7.09%
known as ES2015

TABLE III: Proportion of Each Reclassified Category of
Coding Style Violations

TABLE IV: Pearson Correlation Coefficients between Differ-
ent Attributes and the Violation Ratio

Question Answer Attribute Python | C/C++ | JavaScript
name import space name | import space Score -0.615 | -0.789 -0.01
C/C++ 0.05% 0.68% | 89.07% | 0.92% | 0.78% | 89.26% ViewCount 0.305 0.517 0.595
Python 14.01% 3.46% 8.88% 9.45% 1.79% 5.18% Question FavoriteCount 0.348 -0.627 0.130
JavaScript 0.01% 0.00% | 44.78% | 0.01% | 0.00% | 37.91% AnswerCount 0.186 0.127 0.483
CommentCount 0.086 0.329 -0.649
Ans Score -0.607 | -0.745 -0.156
045 ISWel I CommentCount | 0487 | 0521 0347
0.4
0.35
s development process. Besides, developers should collaborate
with their peers to improve their coding style. Code reviews
Y o025 . . N
S can provide feedback on how to improve code readability and
»n 02

0 0.2 0.4 0.6 0.8 1 1.2

Violation per Statement

Fig. 3: Mean value of “CommentCount” for question-type
C/C++ posts with the same range of violation ratio

V. DISCUSSION
A. Implications

Our findings have important implications for both develop-
ers and software organizations.

For developers, our study highlights the importance of
compliance with established coding styles and conventions in
order to produce readable and maintainable code. The results
show that code that does not conform to a standard style is
more likely to receive negative feedback and be downvoted
on SO, which can impact the reputation of the developer
and reduce the visibility of their code. Therefore, developers
should carefully follow established coding styles in order to
improve the quality and maintainability of their code, as well
as their position within the developer community. Automated
tools such as linters and code formatters can help developers
capture coding style violations in the early stage of the

maintainability.

For software organizations, our study highlights the impor-
tance of establishing and enforcing coding standards across
development teams. By ensuring that all developers adhere to a
consistent coding style, organizations can improve the quality
and readability of their code, as well as increase the efficiency
and effectiveness of their development processes. Additionally,
our study suggests that organizations should introduce tools
and resources to help developers adhere to coding standards,
such as automated code review tools and training programs.

Finally, our study has implications for the software de-
velopment community. The findings suggest that the use of
standardized coding styles and conventions can improve the
quality and maintainability of code, which can ultimately
lead to better software products and a more robust software
industry.

B. Threats to Validity

Many code snippets used in our experiments are incomplete,
which is a possible threat to the conclusion of our study.
As many questions on SO only contain partial code, several
coding style rules cannot be applied. To address this issue,
we had to disable these rules, as illustrated in Table V. While
this approach may have some impact on the results obtained,
it is unlikely to introduce a significant bias in the study’s
findings. Nonetheless, caution is warranted when interpreting
the results, and future research could benefit from using more
complete code snippets.

TABLE V: Disabled Rules for Three Code Analysis Tools
ESLint

Pylint
1.Unused wildcard import
2.Missing docstring
3.Undefined variable

Cpplint

1.no-unused-vars
2.no-use-before-

1.Missing copyright
information in file

4 Missing final newline 2.No newline at the define
5.Allow constants and end of the code block | 3.no-undef
modules using any named | 3.No space at the 4.no-trailing-
style end of the code line spaces

6. Import error

In the process of gathering data, code snippets were se-
lectively extracted through the utilization of pertinent tags.
Nonetheless, it is plausible that a subset of posts might
contain erroneously labeled snippets, or code snippets written
in Python, C/C++, and JavaScript are not labeled by those tags.
As a mitigation strategy, we processed all code snippets with
code analysis tools and found a small minority, less than 10%,
of snippets that proved to be beyond the bounds of the tools.
These snippets were deemed invalid and were consequently
excluded by way of manual intervention. For instance, within
the 116,000 snippets that were extracted with the “Python”
tag, 9,752 snippets (8.41%) were identified as unsuitable for
analysis and were consequently eliminated. Nonetheless, it is
conceivable that some mislabeled code snippets may still exist.

VI. CONCLUSIONS

To explore the coding style compliance on Stack Overflow,
we first collected over 400,000 Python, C/C++, and JavaScript
code snippets from July 2008 to April 2022. Then, we con-
ducted empirical experiments on the collected dataset. Our
findings indicate that: 1) 93.54%, 91.13%, and 98.95% Python,
C/C++, and JavaScript code snippets in questions and 89.53%,
65.83% and 100% Python, C/C++, and JavaScript code snip-
pets in answers contain violations of coding style guidelines.
2) The most frequently broken rule is whitespaces in C/C++,
undefined syntax errors in Python, inconsistent indentation and
semicolon usage in JavaScript questions and answers. 3) Posts
in Python and C/C++ with more violations have lower “Score”.
For C/C++ questions, “FavoriteCount” is negatively correlated
with violation per statement, while for JavaScript questions,
“CommentCount” is negatively correlated with violation per
statement.

In this study, we analyzed code snippets in Python, C/C++,
and JavaScript on Stack Overflow to explore the problem
of coding style compliance. In the future, we will further
investigate other programming languages and Q&A websites
to provide additional insights.

ACKNOWLEDGMENTS
This work was supported by the Spark Project of the Beijing
University of Technology (Project No. XH-2023-02-35).
REFERENCES

[1] Stack Overflow trends — most popular languages. [Online]. Available:
https://insights.stackoverflow.com/trends

[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

YANG, DI, HUSSAIN, AFTAB, LOPES, CRISTINA. From Query to
Usable Code: An Analysis of Stack Overflow Code Snippets[J]. 2016.
S. Baltes, L. Dumani, C. Treude, and S. Diehl, “SOTorrent: Reconstruct-
ing and analyzing the evolution of Stack Overflow posts,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
2018, pp. 319-330.

Lee, T., J. B. Lee, and H. P. In. A Study of Different Coding
Styles Affecting Code Readability.” International Journal of Software
Engineering & Its Applications 7.5(2013):413-422.

Themistoklis Diamantopoulos and Andreas L. Symeonidis. Employing
source code information to improve question-answering in Stack Over-
flow. In MSR 15, pages 454457, 2015.

Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. Mining StackOverflow to turn the IDE
into a self-confident programming prompter. In MSR ’14, pages
102-111,2014.

Kathryn T Stolee, Sebastian Elbaum, and Daniel Dobos. Solving the
search for source code. Transactions on Software Engineering and
Methodology, 23(3):1-45, 2014.

Siddharth Subramanian and Reid Holmes. Making sense of online code
snippets. In MSR 13, pages 85-88, 2013.

C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco and R. Oliveto,
“Toxic Code Snippets on Stack Overflow,” in IEEE Transactions on
Software Engineering, vol. 47, no. 3, pp. 560-581, 1 March 2021, doi:
10.1109/TSE.2019.2900307.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a
multilinguistic token-based code clone detection system for large scale
source code. Transactions on Software Engineering, 28(7):654-670,
2002.

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle
L Mazurek, and Christian Stransky. You get where you’re looking for:
The impact of information sources on code security. In SP ’16, pages
289-305, 2016.

Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stransky,
Yasemin Acar, Michael Backes, and Sascha Fahl. Stack Overflow
considered harmful? the impact of copy&paste on Android application
security. In SP "17, pages 121-136, 2017.

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan,
and Miryung Kim. Are online code examples reliable? an empirical
study of API misuse on Stack Overflow. In ICSE’18, 2018.

K. Hart and A. Sarma, “Perceptions of answer quality in an online tech-
nical question and answer forum,” in Proceedings of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2014, pp. 103-106.

S. M. Nasehi, J. Sillito, F. Maurer and C. Burns, "What makes a good
code example?: A study of programming Q&A in StackOverflow,” 2012
28th IEEE International Conference on Software Maintenance (ICSM),
2012, pp. 25-34, doi: 10.1109/ICSM.2012.6405249.

M. Duijn, A. Kucera, and A. Bacchelli, “Quality questions need quality
code: classifying code fragments on stack overflow,” in Proceedings of
the 12th Working Conference on Mining Software Repositories. IEEE
Press, 2015, pp. 410-413.

C. Treude and M. P. Robillard, “Understanding stack overflow code
fragments,” in International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2017, pp. 509-513.

N. Bafatakis et al., “Python Coding Style Compliance on Stack
Overflow,” 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), 2019, pp. 210-214, doi:
10.1109/MSR.2019.00042.

F. Fischer et al., ”Stack Overflow Considered Harmful? The Im-
pact of Copy&Paste on Android Application Security,” 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 121-136, doi:
10.1109/SP.2017.31.

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design Lessons from the Fastest Q&A Site in the West,” in Proceedings
of the 2011 annual conference on Human factors in computing systems,
New York, NY, USA, 2011, pp. 2857-2866.

M. Squire and C. Funkhouser, “A bit of code’: How the stack overflow
community creates quality postings, ”” in Proc. of HICSS 2014, pp. 1425-
1434.

J. Yang, C. Hauff, A. Bozzon, and G.-J. Houben, “Asking the right
question in collaborative Q&A systems, ” Proc. of Hypertext 2014, pp.
179-189.

