
Reducing Mismatches in Syntax Coupled Hunks
Chunhua Yang1,2, Xiufang Li1

1School of Computer Science and Technology
QILU University of Technology(Shandong Academy of Sciences)

2 Shandong Wiztek Science and Technology Co., Ltd.
Jinan, China

jnych@126.com, lixf@qlu.edu.cn

Abstract—Hunks generated by textual-differencing tools are
often used for understanding code changes. However, in the
side-by-side view, the match between the deleted and added
lines of a hunk is sometimes inconsistent with actual changes to
the corresponding syntax entities. This mismatch usually occurs
in syntax coupled hunks, i.e. hunks that contain changes to
multiple syntax entities. It makes the hunks incomprehensible
and misleading.

A hybrid differencing algorithm is proposed to alleviate this
problem. It applies tree-differencing to syntax coupled hunks to
generate edits. It then maps edits back to the source code to
generate adjusted hunks. Based on the current implementation,
we conducted a case study on 10 open source projects. The results
showed that 15% of commits contain syntax coupled hunks. And,
we evaluated the results of the algorithm on 1,500 randomly
drawn samples, and the correct matching rate was as high as
97%, demonstrating the effectiveness of the algorithm in reducing
mismatches.

Index Terms—code differencing, hunks, mismatching, change
understanding, software evolution

I. INTRODUCTION

Understanding how software changes has become a reg-
ular part of modern software development. Many version
management systems and IDEs provide differencing tools to
present changes to the source code. The prevalent differencing
tools are textual because they are efficient and not limited to
programming languages. They return deltas by comparing the
text values of the original and modified versions of the source
code.

The common form of deltas is line-based hunks that are
displayed in a unified view. For example, Fig.1 depicts two
hunks returned by the well-known GnuDiff [1]. Each hunk
consists of deleted lines(red), inserted lines(green), and sur-
rounding contextual lines(white). Tools such as GitHub Diff
[2], KDiff3 [3] and Mergely [4] also provide a side-by-side
view, which can show the relationship between deleted lines
and inserted lines more clearly. For example, Fig.2 is a split
view provided by GitHub Diff to present the hunks in Fig.1.

However, the hunks generated by textual differencing tools
are sometimes syntax coupled, that is, they contain
changes to multiple syntax entities. For example, as shown
in Fig.1, changes to methods raiseTimeoutFailure and per-
formOnPrimary scattered and entangled in two hunks. This
is a two-to-one method coupling, where two methods in the

DOI reference number: 10.18293/SEKE2022-049

original version are coupled with one method in the modified
version.

In syntax coupled hunks, mismatch is a common phe-
nomenon, usually in the following two forms:

1) Mismatches between nodes in the original and modified
versions of the source code. For instance, according
to the hunks shown in Fig.2, the raiseTimeoutFailure
method in the original version matches performOnPri-
mary method in the modified version. But obviously,
the performOnPrimary method of the same name in the
original and modified versions should match.

2) Mismatches between non-code lines (such as delimiters
and comments), or certain elements of a signature or
statement (such as arguments and annotations). For
example, in Fig.2, the brace on line 543 of the original
version matches the brace on line 509 of the modified
version incorrectly. In fact, the two curly braces are
a necessary part of the deleted If-statement and the
inserted If-statement respectively, so they should not be
recognized as context.

Mismatches in syntax coupled hunks hinders change under-
standing in the following ways:

• Mismatches between nodes can mislead users with incor-
rect edit operations, thereby obscuring the actual changes.
For example, according to Fig.1, the edit operation be-
tween raiseTimeoutFailure and performOnPrimary is an
update. But, the update should be actually between per-
formOnPrimary(int, ShardRouting, ClusterState) of the
original version and performOnPrimary(int, ShardRout-
ing) of the modified version.

• Mismatches cause changes to the entire entity to be
spread out over multiple hunks, making these hunks
incomprehensible. In order to find out the actual changes,
the user must go through all deleted and inserted lines.

In order to alleviate the mismatch problem in syntax coupled
hunks, an algorithm is porposed in the paper. It makes the
following contributions.

• It is a novel hybrid differencing algorithm for alleviating
the mismatch problem. It applies tree-differencing to
syntax coupled hunks to generate edit operations. It then
maps edit operations back to the source code to generate
adjusted hunks.



Fig. 1. An Example of Syntax Coupled Hunks.

• In addition to hunks, the algorithm outputs edit opera-
tions that facilitate analysis. For example, the hunk-level
change dependency analysis becomes feasible. So far,
change dependency analysis has been mainly performed
at the method or line level [5] [6].

We have implemented the algorithm and conducted a case
study to examine the distribution of syntax coupled hunks and
evaluate the effectiveness of the algorithm.

The remainder of the paper is organized as follows. In
Section 2, we present the algorithm. In Section 3, we present
the implementation and case study. We review the related work
in Section 4 and summarize the paper in Section 5.

II. THE ALGORITHM

Syntactically, changes to the source code are edit operations
on the nodes of the abstract syntax tree (AST). Typical edit
operations include insert, delete, update, and move. If one
or more hunks contain multiple edit operations on nodes on
the same level of the AST, they are syntax coupled. For
example, the two syntax coupled hunks in Fig.1 contain a
deletion of method raiseTimeoutFailure and an update on
method performOnPrimary.

We define a tuple (H,N1, N2) to represent syntax coupled
hunks, where H is a set of hunks, N1 and N2 are the sets
of nodes in the original and modified versions of AST whose
changes occur in the hunks of H .

Inputting syntax coupled hunks, the algorithm generates
the adjusted hunks through a differencing phase and a layout
phase. During the differencing phase, tree-differencing is ap-
plied to the nodes in both versions to generate edit operations.
Then, in the layout phase, the lines of code belonging to these
edit operations are sorted, and the remaining lines are filled
in the appropriate positions to produce adjusted hunks.

A. The Tree-Differencing Phase

The process is described in Algorithm 1. The algorithm
inputs a hunk set H and two node sets N1 and N2 that belong
to the original and modified versions of AST, and outputs edit
operations. The main steps are as follows:

• Firstly, through the Matching function, the nodes in N1

and N2 are compared with each other to find similar
nodes. (Line 1)

Algorithm 1: HASTDiff(H , N1, N2)
Input: a set H of hunks, two sets of nodes N1 and N2

Output: The set of edit operations O
1 P ←Matching(N1, N2);
2 Chr1 ← ∅; Chr2 ← ∅; O ← ∅;
3 for each pair (n1, n2) ∈ P do
4 O ← O ∪ genOp(n1, n2);
5 C1 ← childrenInHunks(n1, H);
6 C2 ← childrenInHunks(n2, H);
7 Hc ← hunksCrossingNodes(C1) ∪

hunksCrossingNodes(C2);
8 U ← hunkgroupExtract(Hc, C1, C2);
9 for each pair (HU , NU1, NU2) ∈ U do

10 O ← O ∪HASTDiff(HU , NU1, NU2);

11 Chr1 ← Chr1 ∪ unmatchedNodes(C1, U);
12 Chr2 ← Chr2 ∪ unmatchedNodes(C2, U);

13 Nunmatched1 ← unmatchedNodes(N1, P );
14 for each node n1 ∈ Nunmatched1 do
15 O ← O ∪ genOp(n1, null);
16 Chr1 ← Chr1 ∪ childrenInHunks(n1, H);

17 Nunmatched2 ← unmatchedNodes(N2, P );
18 for each node n2 ∈ Nunmatched2 do
19 O ← O ∪ genOp(null, n2);
20 Chr2 ← Chr2 ∪ childrenInHunks(n2, H);

21 U ← hunkgroupExtract(H,Chr1, Chr2);
22 for each pair (HU , NU1, NU2) ∈ U do
23 O ← O ∪HASTDiff(HU , NU1, NU2);

24 for each node n1 ∈ unmatchedNodes(Chr1, U) do
25 O ← O ∪ genOp(n1, null);

26 for each node n2 ∈ unmatchedNodes(Chr2, U) do
27 O ← O ∪ genOp(null, n2);

• Then, for each matched node pair, an update operation
is generated. And, their children in common hunks are
recursively differentiated. Their remaining children are
added to the sets Chr1 and Chr2, respectively. (Line
3∼12)

• For each unmatched node in the set N1 or N2, a delete or



Fig. 2. The Hunks Generated by GitHub Diff for the Hunks in Fig.1.

Algorithm 2: Layout(O, H)
Input: a set O of edit operations, and a set H of hunks
Output: The set of adjusted hunks L

1 Osorted ← ∅;
2 L1 ← sortOps(O, true);
3 L2 ← sortOps(O, false);
4 insertContextRanges(L1, H);
5 insertContextRanges(L2, H);
6 while hasNext(L1) ∧ hasNext(L2) do
7 (S1, u1)← findNextUpdateOrContext(L1);
8 (S2, u2)← findNextUpdateOrContext(L2);
9 Osorted ← Osorted ∪ S1;

10 Osorted ← Osorted ∪ S2;
11 addUpdateOrContext(Osorted, u1, u2);

12 addIsolatedLines(Osorted, H);
13 matchingIsolatedBraces(Osorted);
14 L← genAdjustedHunks(Osorted, H)

insert operation will be generated, and then its children
will be added to Chr1 and Chr2 respectively. (Line
13∼20)

• A recursive differencing is applied to the children in sets
Chr1 and Chr2. Then, a delete or an insert operation is
generated for each unmatched child in Chr1 or Chr2,
respectively. (Line 21∼27)

For syntax coupled nodes, the function Matching is used to
determine which node in the original version is most similar to
which node in the modified version. We use a strategy similar
to that used in ChangeDistiller [12] to check the similarity
between nodes. The function hunkgroupExtract is used in the
algorithm to extract the syntax coupled hunk groups. And,
after all edit operations are generated, we generate an ADD
operation for consecutive insert operations that belong to an
entire entity, and a DEL operation for consecutive delete

operations that belong to an entire entity.

B. The lay out phase
In this phase, the edit operations generated in the previous

phase will be laid out to generate adjusted hunks. The resulting
hunks are presented in a split view.

All operations are sorted in ascending order by the starting
line number of the operation. Lines of code in the original
and modified versions belonging to the update operation are
displayed horizontally. And the update operations and context
lines are set as boundaries to arrange other operations and the
remaining hunk lines.

Algorithm 2 depicts the process. The main steps are as
follows:

1) The operations in the set O are first sorted by the line
number of the nodes in the original version(line 2) and
the modified version(line 3), respectively. The sorted
operations are stored in lists L1 and L2, respectively.

2) Then the context lines between the hunks in H are
inserted into appropriate places in the lists L1 and L2,
respectively. (Line 4∼5)

3) Next, for the lists L1 and L2, repeat the following steps
until both lists are empty:

a) Find the next update operation or context from each
list. (Line 7∼8). The function findNextUpdateOr-
Context implements it. For a list L, the function
returns the update operation or context u, and a
list S of operations before u.

b) Insert the operations of S1 into the list Osorted.
Then insert the operations of S2. (Line 9∼10).

c) Finally, insert u1 and u2 into Osorted, respectively.
(Line 11)

4) Insert the remaining deleted or inserted lines properly
into Osorted. (Line 12)
In this step, if there are isolated braces in the original
and modified versions, they will be matched properly.
The matching braces become the context.



5) Finally, the adjusted hunks are generated according to
the lines arranged in the Osorted list.

C. Illustration

Take Fig.1 as an example. Through the tree-differencing, the
signature performOnPrimary(int, ShardRouting, ClusterState)
in the original version matches the signature performOnPri-
mary(int, ShardRouting) in the modified version. And, the two
children of the method performOnPrimary in the modified
version, namely the local declaration and the If-statement, are
identified as insert. Since the If-statement and its children are
identified as insert operations, the changes to the If-statement
are identified as an ADD.

Unmatched signature raiseTimeoutFailure(TimeValue,
Throwable) and its children are identified as delete operations.
Since its signature and its children are identified as delete
operations, the method is identified as DEL.

Therefore, through the differencing phase, the following
operations will be generated.

• DEL raiseTimeoutFailure(Line 535∼544)
• update performOnPrimary (Line 546 of the original ver-

sion and Line 504 of the modified version)
• ADD Local declaration (Line 505)
• ADD if statement (Line 506∼508)

In the layout phase, these four operations are sorted. And
the remaining isolated lines (the deleted line 545) are inserted
before the update operation. The output of the algorithm is
shown in Fig.3.

III. THE IMPLEMENTATION AND CASE STUDY

We have implemented the algorithm. We use our previous
work [7] to extract the syntax coupled hunk groups and use
the proposed algorithm to generate the adjusted hunks in each
group.

Based on the current implementation, we conducted a case
study. The aim of the case study is to examine the distribution
of syntax coupled hunks and evaluate the effectiveness of the
algorithm.

To achieve these aims, the following research questions are
to be answered:

• RQ1: What is the proportion of syntax coupled hunks in
daily revisions?

• RQ2: Does the proposed algorithm generate the
correctly-matched results for syntax coupled hunks?

A. The Data Set

We selected 10 open java projects from GitHub. They have
different periods, stars, and scales.

The information of these projects is listed in Table I. For
example, since 2010, the most popular project elasticsearch
has 36,918 commits. Note that, we only list the number of
commits containing code change hunks. Commits with only
non-code changes were ignored.

TABLE I
STUDY PROJECTS AND THEIR TOTAL NUMBER OF REVISIONS(Commits)

THAT CONTAIN CODE CHANGE HUNKS.

No. Project Stars Peroid Commits
1 activemq 1.6k 2005-12-12∼2019-11-5 5,916
2 eclipse.jdt.core 166 2001-6-5 ∼2019-11-6 15,150
3 elasticsearch 45.3k 2010-2-8 ∼2019-10-4 36,918
4 glide 27.6k 2012-12-20 ∼2019-11-6 1,625
5 guice 8.7k 2006-8-22 ∼2019-10-4 877
6 hibernate-orm 4.1k 2004-6-3 ∼2019-10-8 7,413
7 jEdit 17 2001-9-2 ∼2019-10-15 4,998
8 maven 1.9k 2003-9-1 ∼2019-11-5 5,388
9 redisson 11.1k 2013-12-22 ∼2019-11-6 2,461
10 spring-framework 33.4k 2008-7-10 ∼2019-11-5 12,930
Total 93,676

B. The Distribution of Syntax Coupled Hunks(RQ1)
For convenience, we use hunk groups to represent the syntax

coupled hunk groups. Using the current implementation, we
extracted hunk groups in each project and calculated the
number of hunk groups at each granularity.

Table II lists the number of commits that contain hunk
groups, the total number of hunk groups, and the number of
hunk groups at each granularity for each project. We can see
that 14,357 commits in the dataset contain hunk groups, which
account for 15% of the total commits(as shown in Table I).
In addition, the number of hunk groups with method level
coupling ranks first in each project. The number of hunk
groups with statement level coupling ranks second, except for
Guice and Hibernate-orm. In Guice and Hibernate-orm, the
class level coupling ranks second.

TABLE II
THE NUMBER OF COMMITS WITH HUNK GROUPS PER PROJECT, AND THE
NUMBER OF HUNK GROUPS AT EACH GRANULARITY. Hclass , Hmethod ,

Hfield , AND Hstmt REPRESENT THE NUMBER OF HUNK GROUPS AT
CLASS, METHOD, FIELD, AND STATEMENT GRANULARITY,

RESPECTIVELY.

Prj. Commits Number of Syntax Coupled Hunk Groups
Total Hclass Hmthod Hfield Hstmt

1 653(11%) 955 16 608 24 323
2 2,055(14%) 4,892 43 3,349 275 1,336
3 5,731(16%) 11,155 744 8,703 355 1,788
4 269(17%) 507 88 433 25 48
5 143(16%) 221 45 175 10 26
6 1,327(18%) 3,211 131 2,778 83 369
7 758(15%) 1,314 62 844 51 410
8 806(15%) 1,227 19 825 98 322
9 375(15%) 730 3 663 5 64
10 2,240(17%) 4,708 289 3,747 55 711
Total 14,357(15%) 28,920 1,440 22,125 981 5,397

(77%) (19%)

RQ1: In summary, 15% of code change commits contain
syntax coupled hunks.

C. Effectiveness of The Proposed Algorithm(RQ2)
In order to answer the second research question, based

on a set of samples randomly selected from the dataset, we



Fig. 3. The Adjusted Hunk Generated by the Proposed Algorithm for the Hunks in Fig.1.

manually evaluated the results generated by the proposed
algorithm. Meanwhile, we compared the results with those
generated by GitHub Diff and Mergely. We adopt these two
tools due to the following reasons:

• GitHub is a platform that contains lots of open source
projects. As a result, its diff is widely used for change
understanding.

• Mergely provides a special side-by-side diff view style.
And it provides a JS library. So, based on a hunk group
set, it is easy to run Mergely on it and display the results
in an html page.

For each sample hunk group, we checked the hunks gener-
ated by the algorithm, GitHub Diff and Mergely, to see if they
matched correctly. We created a web page to view samples and
evaluate results. The authors and three master students did
the manual assessment. They have rich experience in software
development. The three students first evaluated the samples
of different projects independently. Then, the author reviewed
their work.

We considered the coupling structure and the number of
hunks contained when selecting samples. In the end, a total of
1,437 samples were selected. The left half of Table III lists the
numbers of samples selected from each project. The evaluation
results of the sample set are shown in the right half of table III.
According to the table, the algorithm correctly matched 1,395
hunk groups, accounting for 97%. In the case of GitHub Diff
and Mergely, the figures are 1,213 and 1,106, accounting for
84% and 77%, respectively.

RQ2:To sum up, in 97% of the samples, the adjusted hunks
generated by the proposed algorithm are correctly matched.

The correct matching rate is higher than GitHub Diff and
Mergely.

D. Threats to Validity

As the current implementation is based on Java, all selected
projects are written in Java. In addition, since manual evalua-
tion is time-consuming, the number of samples selected is not
large. As a result, the validity of the case study is threatened
by the programming language and sample size of the selected

TABLE III
THE NUMBER OF SAMPLE HUNK GROUPS SELECTED AND THE

EVALUATION RESULTS. HAST REPRESENTS THE PROPOSED ALGORITHM,
GH REPRESENTS GITHUBDIFF, AND MG REPRESENTS MERGELY.

Prj.
Number of Sample Hunk Groups Correct Matching

Hclass Hmethod Hstmt Total HAST GH MG

1 2 119 48 169 161 149 136
2 5 65 64 134 131 123 120
3 69 169 67 305 295 263 239
4 14 73 8 95 91 77 69
5 20 33 4 57 54 51 53
6 22 89 34 145 142 117 107
7 11 51 35 97 96 75 74
8 7 94 38 139 135 98 90
9 2 102 16 120 118 107 82
10 33 104 39 176 172 153 136

185 899 353 1,437 1,395 1,213 1,106
97% 84% 77%

projects. In addition, the results of manual evaluation are
influenced by inspectors. In some cases, whether one entity
should be considered a match with another entity may vary
from person to person.

IV. RELATED WORK

Textual Differencing. Textual-differencing tools detect text
changes based on the longest common subsequence algorithm
[8]. They usually generate line-based hunks(i.e., deltas). The
well-known GNU diff can return added or deleted lines, which
has been widely integrated into IDEs and version-control
systems to calculate and present source code changes. Tools
such as LDiff [9] and LHdiff [10] improve the GNU diff
by detecting moved lines. To make diff easier to read, tools
like GitHub Diff, Mergely and KDiff3 provide a side-by-
side view and the within-line differencing to refine changes
in the hunk. In [11], it is shown that Git diff with different
algorithm options can give different results and revealed that
the Histogram option is better for describing code changes that
the default Myers option. However, for the example shown in



Fig.2, the results of the two algorithm options are the same.
The mismatch problem is not improved.

Tree Differencing. Tree-differencing approaches return
structural changes by comparing two ASTs representing two
versions of the source code. They generate edit operations that
represent changes to syntax entities.

The most famous tree-differencing algorithm is ChangeDis-
tiller [12]. It detects changes in classes, methods, and fields.

Diff/TS [13] detected changes in various syntax granulari-
ties including classes, statements and expressions. It can detect
the move actions. GumTree [14] improved ChangeDistiller by
producing a shorter edit script. JSync [15] and srcDiff [16]
used the longest common subsequence algorithm to compare
AST nodes. MTDIFF [17] improved the move actions and
generated shorter edit scripts than Gumtree, RTED, JSync,
and ChangeDistiller with a higher accuracy. Higo et al. [18]
considered copy-and-paste as an editing action. IJM [19] can
generate more accurate move and update operations than
GumTree and ChangeDistiller. CLDiff [20] aimed at gener-
ating concise linked differences. Tree-differencing approaches
generate syntax edits. However, they are less efficient than
textual-differencing. In [21], a hybrid method was proposed
to improve GumTree matching to generate shorter edit scripts.
The matching algorithm in GumTree was enhanced by using
line-based textual differencing. The method is a hybrid, sim-
ilar to ours. However, they focused on the optimization of
GumTree, not the mismatching problem in hunks.

Tangled changes. Tao and Kim [5] proposed to partition
composite code changes by grouping static related changes
and methods with similar names. Herzig and Zeller [6]
proposed CONFVOTERS that combine various dependencies
to detect the related changes. Barnett et al. [22] proposed
CLUSTERCHANGES that can relate separate regions of change
by using static analysis. However, these researches focused
on the tangled changes that accomplish the same task. The
algorithm proposed in the paper focuses on the tangled entities
in hunks.

V. CONCLUSIONS

We present an algorithm that applies tree-differencing to
syntax coupled hunks to alleviate the mismatch problem.
Based on current implementation, we conducted a case study
to examine the distribution of syntax coupled hunks and eval-
uate the effectiveness of the algorithm. We found that 15% of
commits contained syntax coupled hunks. And, the proposed
algorithm greatly improves the mismatching in syntax coupled
hunks.

Since the algorithm is based on the textual-differencing
and tree-differencing is only used to compare the nodes that
cross hunks, it is efficient than tree-differencing. Therefore, it
can be used to extend the textual-differencing tools to reduce
mismatches without worrying about efficiency. As a future
work, we will provide implementations in other programming
languages.

ACKNOWLEDGMENT

This work is supported by Shandong Provincial Natural
Science Foundation (Grant No. ZR2020MF031).

REFERENCES

[1] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Communications of the ACM, 1977, vol.20,
no.5, pp.350-353.

[2] “GitHub Diff,” https://github.com
[3] “KDiff3,” http://kdiff3.sourceforge.net/
[4] “Mergely,” http://www.mergely.com/
[5] Y. Tao and S. Kim, “Partitioning composite code changes to facilitate

code review,” In Proceedings of the 12th Working Conference on Mining
Software Repositories, 2015, pp. 180-190.

[6] K. Herzig and A. Zeller. “The impact of tangled code changes,” In
Proceedings of the10th Working Conference on Mining Software Repos-
itories (MSR), San Francisco, CA, 2013, pp.121-130.

[7] C. Yang, J. Whitehead, “Pruning the AST with Hunks to Speed up Tree
Differencing,” In Proceedings of 26th IEEE International Conference
on Software Analysis, Evolution and Reengeneering (SANER), 2019,
Hangzhou, China, pp. 15-25.

[8] E. W. Myers, “AnO (ND) difference algorithm and its variations,”
Algorithmica, 1986, Vol.1, No.1, pp.251-266.

[9] G. Canfora, L. Cerulo and M. Di Penta, “Ldiff: An enhanced line
differencing tool,” In Proceedings of the 31st International Conference
on Software Engineering, 2009, pp. 595-598.

[10] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. Di Penta, “ LHD-
iff: A language-independent hybrid approach for tracking source code
lines,” In 29th IEEE International Conference on Software Maintenance
(ICSM 2013), 2013, pp. 230-239.

[11] Y.S. Nugroho, H. Hata, and K. Matsumoto, “How different are differ-
ent diff algorithms in Git?,” Empirical Software Engineering,2020, 25,
pp.790-823.

[12] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Transactions on software engineering, 2007, vol.33, no.11, pp.725-743.

[13] M. Hashimoto and A. Mori, “Diff/TS: A Tool for Fine-Grained Struc-
tural Change Analysis,” In WCRE’08: Working Conf. Reverse Eng., pages
279-288, Antwerp, Belgium, Oct. 2008.

[14] J. R. Falleri, F. Morandat, X. Blanc, M. Martinez and M. Monperrus,
“Fine-grained and accurate source code differencing,” In Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 313-324.

[15] H. A. Nguyen, T. T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen,
“Clone Management for Evolving Software,” IEEE Trans. Softw. Eng.,
38(5):1008-1026, Sep. 2012.

[16] M.J. Decker, M.L. Collard, L.G. Volkert, J.I. Maletic. “srcDiff: A syn-
tactic differencing approach to improve the understandability of deltas,”
Journal of Software: Evolution and Process. 2020, 32(4).

[17] G. Dotzler and M. Philippsen, “Move-optimized source code tree differ-
encing,” In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, 2016, pp. 660-671.

[18] Y. Higo, A. Ohtani, and S. Kusumoto, “Generating simpler AST edit
scripts by considering copy-and-paste,” In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2017, pp. 532-542.

[19] V. Frick, T. Grassauer, F. Beck, and M. Pinzger, “Generating Accurate
and Compact Edit Scripts Using Tree Differencing,” In Proceedings of
the 34th IEEE International Conference on Software Maintenance and
Evolution, ICSME 2018, 23-29 Sept. 2018, Madrid, Spain, pp. 264-274.

[20] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao,
“CLDIFF: Generating Concise Linked Code Differences,” In Proceedings
of the 33rd IEEE/ACM International Conference on Automated Software
Engineering, Montpellier, France, 2018, pp. 679-690

[21] J. Matsumoto, Y. Higo and S. Kusumoto, “Beyond GumTree: A Hybrid
Approach to Generate Edit Scripts,” In Proceedings of IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), 2019,
pp. 550-554.

[22] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping developers
help themselves: Automatic decomposition of code review changesets,”
In Proceedings of the 37th International Conference on Software Engi-
neering, 2015, Vol. 1, pp.134-144.


	Introduction
	The Algorithm
	The Tree-Differencing Phase
	The lay out phase
	Illustration

	The Implementation and Case Study
	The Data Set
	The Distribution of Syntax Coupled Hunks(RQ1)
	Effectiveness of The Proposed Algorithm(RQ2)
	Threats to Validity

	Related Work
	Conclusions
	References

