
Verifying Static Aspects of UML models
using Prolog

Feng Sheng Huibiao Zhu* Zongyuan Yang Jiaqi Yin Gang Lu*

School of Computer Science and Software Engineering
East China Normal University, Shanghai, China

Abstract—The Unified Modeling Language (UML) provides
a number of diagrams to describe the modeling system from
different perspectives, which contain overlapping information
about the systems. However, it does not provide any means
of meticulously checking consistencies among the overlapping
elements. In this study, we propose an approach for consis-
tency checking of UML class diagrams and object diagrams
using Prolog. First we formalize the model elements based on
metamodel and convert the models into Prolog facts. Then we
define some consistency rules that are encoded into Prolog. The
Prolog’s reasoning engine automatically checks the consistencies
of models. In addition, we provide interfaces to query models
for properties, elements and submodels. The design errors can
be effectively avoided and the correctness of code-generalization
can be guaranteed according to our approach.

Index Terms—Class Diagram, Object Diagram, Consistency
Checking, Prolog

I. INTRODUCTION

The Unified Modeling Language [1] has been developed as
a standard object-oriented modeling notation in Model Driven
Engineering (MDE) and is widely used in industry. It provides
numbers of diagrams to model different aspects of the systems,
such as the static views (class diagrams, object diagrams) and
dynamic views (sequence diagrams, statecharts). In addition, it
offers a variety of tools that cover all the features of the system
modeling for a more complete description of the models.
However, the syntax and semantics of the UML are semi-
formally defined in terms of a metamodel combing natural
language descriptions, UML notations and Object Constraint
Language (OCL), which is not sufficient to express the seman-
tics of the UML models precisely. Moreover, UML uses the
different models to characterize the same system from different
perspectives. Change in one diagram may ultimately affect
the other diagrams, and result the inconsistencies between
different diagrams.

UML models can be represented in the form of a theory
in mathematical logic, such as the description logic [2], data
refinement [3] and category theory [4]. By transforming UML
models into mathematical logic, the problem of inconsistencies
can be regarded as the problem of contradictions in the logic
theory. A system is consistent if it does not contain any contra-
dictions. Inconsistencies in UML models reveals design errors
in software development. Moreover, the inconsistencies will

*Corresponding authors: hbzhu@sei.ecnu.edu.cn (H. Zhu).
glu@cs.ecnu.edu.cn (G. Lu).

not be propagated to the codes if we perform the consistency
checking at design phase.

Various approaches [6] [13] [15] [16] have been proposed to
check the consistency in UML. Typically, approaches devoted
to the verification of UML models convert the models into
formal semantic domains. Besides, different types of consis-
tency rules are defined on the basis of these conversions. The
models’ consistencies are verified according to the possibil-
ity that the models satisfy these consistency rules. Straeten
et al. [2] developed an extension of UML metamodel and
presented a classification of inconsistency problems using
description logic. They expressed the detection and resolution
of consistency conflicts by means of rules. Egea and Rusu
[11] demonstrated the structural and semantic conformance
between models and metamodels by transforming the models
into Maude. Besides, the satisfiability modulo theories (SMT)
is often used to support the consistency verification of UML
models. Soeken et al. [8] presented an automatic approach
that checks the verification for the UML dynamic models. The
underlying verification problem is encoded as an instance of
the satisfiability problem and subsequently solved using a SAT
Modulo Theory solver. However, the SMT solvers typically
only support decidable theories and are not sufficient for
consistency checking. Storrle [12] proposed a representation
of models based on Prolog. He provided query interfaces to
identify elements, properties and submodels. Khai et al. [10]
proposed an approach for consistency checking of class and
sequence diagrams based on Prolog. Cabot et al. [21] presented
an automatic method for the verification of UML class dia-
grams extended with OCL constraints. They transformed the
UML/OCL model into a Constraint Satisfaction Problem. The
correctness properties such as weak and strong satisfiability
or absence of constraint redundancies are checked. Khan and
Porres [7] proposed an approach to automatically validate the
consistency of UML models using logic reasoners for the Web
Ontology Language OWL 2. They translated the models into
OWL 2 and presented a tool supporting UML modeling tools
to perform the translation from the models into the OWL 2.

In this paper, we propose an approach for the fully au-
tomatic, expressive verification of UML class diagrams and
object diagrams using Prolog. First we formalize the model
elements based on metamodel and convert the models into
Prolog facts. Then we summarize several different types of
consistency problems and encode into Prolog rules. Finally the

DOI reference number: 10.18293/SEKE2019-175

reasoning engines such as SWI-Prolog, are used to check the
inconsistencies through analyzing the models and feedback the
error information if any inconsistency error occurs. According
to our approach, the design errors can be effectively avoided
in design phase and the correctness of code-generalization can
be guaranteed.

This paper is structured as follows. In Section II, we
introduce the background about model consistency and our
approach. Section III presents the formalization and con-
version from UML models to Prolog. Section IV describes
the different types of consistency. We have implemented a
prototype tool which automatically translates the UML models
into Prolog codes in Section V. Section VI shows some
experiments to indicate the performance of our approach.
Section VII concludes the paper and discusses the further
work.

II. BACKGROUND

A. Consistency checking of UML models

In the past few years, the consistency problems in UML
have become a hot issue. The term model consistency [18] is
defined as “the overlapping elements in different models of
the same system satisfy certain properties”. There are many
studies that classify the consistency of models. One of the most
widely accepted classifications is the Engels’ classification [6],
which classifies the model consistency into four categories:
(1) Vertical consistency occurs when an abstract model is
refined into a more concrete model. It is desirable that the
concrete model should be consistent with the abstract one. The
refinements of models cause the vertical consistency problems.
(2) Horizontal consistency arises in case where different mod-
els describe the same system from different aspects containing
overlapping elements. The overlapping elements should satisfy
some elementary properties to ensure the consistency between
the different models.
(3) Syntactical consistency ensures that a model conforms to
the abstract syntax. The abstract syntax of models is usually
defined by the metamodel. In other word, we consider that
the models are syntactically consistent if the models are
the instances of classes and associated by the instances of
associations in the metamodel.
(4) Semantic consistency occurs when the developers expect
to get more accurate models through additional constraints
on models. The semantics of UML is usually specified in
natural languages and OCL. It is hard to check the semantic
consistency in UML especially for static diagrams since the
OCL is not precisely defined in UML.

In this paper, we mainly consider three kinds of consistency
issues: horizontal, syntactical and semantic consistency. The
vertical consistency involving the refinements of the models
is out of the scope of this paper.

B. Overview of the approach

We propose a general framework to check the consistency
for a subset of UML static diagrams including class diagrams
and object diagrams. The basic route of our approach is shown

as Fig. 1. First the designer provides a target model, created by
UML CASE tools, and transforms the models into XMI files.
Then the concepts of the models are automatically converted
to the facts in Prolog database. Next the consistency rules with
the facts are imported into the SWI-Prolog. The SWI-Prolog
analyzes and queries the elements to verify the consistency
of the target model and feedback the error information if any
inconsistency occurs.

Fig. 1. An Outline of Our Approach

III. FROM UML MODELS TO PROLOG

A. From Class Diagrams to Prolog

The metamodel is a language that contains certain metadata
describing the concepts and relations for providing a modeling
language. The Meta Object Facility (MOF) standard defines
the Essential MOF (EMOF), a subset of MOF that is used to
define the metamodels. In this study, we formally define the
syntax of the models according to the EMOF metamodel.

Definition 1: The syntax of the class diagrams is a structure

M = {class, attribute, operation, association,
rolename,multiplicity,≺}.

where
• class is a set of classes.
• attribute is a set of signatures for functions mapping a

class c to an associated attribute value.
• operation is a set of signatures for user-defined operations

of a class c.
• association is a set of associations.
• rolename is a set of roles.
• multiplicity is a set of multiplicities of associations.
• ≺ is a partial order on classes reflecting the generalization

hierarchy of classes.
The class diagrams are denoted as a series of Prolog facts.
Each model element in M is described as a set of facts
with the same clause and different parameters. Every element
of class diagrams is assigned an identifier that identifies the
actual objects that are to be instances of the various classes
in the metamodel. In the following, each model elements is
considered in details.

The most important part of the class diagrams is the classes.
A class is a collection of objects that have the same attributes,
operations, relationships, and semantics. The class/3 clause
in Prolog is used to denote the class, including an identifier, a
class name and a boolean type indicating whether it is abstract.

class(classid, classname, isAbstract).

Note that the abstractions of the objects are classes, and the
instantiations of the class are objects. The classes can be
considered as the types of objects according to the Model
Driven Architecture (MDA).

The classes define a group of objects’ states and behaviors.
More specifically, the attributes and associations of classes
define the objects’ states and relationships respectively, and
the operations describe the behaviors of objects. The attributes
are the values describing the object’s properties, including
a name and a type that specifies the domain of values.
The attribute/4 clause describes the attributes of class
diagrams in Prolog.

attribute(attrid, attrname, attrtype, classid).

where attrid is an identifier of attribute, attrname is
an attribute name, attrtype is the type of attribute, and
classid is an identifier of class to which this attribute
belongs.

The operations are parts of a class declaration in models.
They describe the behavioral properties of classes, represented
by the operation/4 clause in Prolog.

operation(opid, opname, [parameters], classid).

where opid is an identifier of the operation, opname is a
name of the operation, [parameters] is a list of parame-
ters’ id, and classid is an identifier of class to which this
operation belongs.

The parameter/3 clause in Prolog denotes the parame-
ters in operations.

parameter(pid, pname, ptype).

where the pid and pname denote the identifier and name of
the parameter respectively, and ptype denotes the type of the
parameter, including the primitive types and class types.

The associations describe the structural relationships be-
tween the classes. In general, a class can have more than
one associations, and an association can connect two or more
classes. In this study, only binary associations are considered,
the n-ary associations can be obtained by extending parameters
in the association/4 clause, where the assoctype can
be directional, nondirectional, aggregate or compositive.

association(associd, classAid, classBid, assoctype).

In an association, the class can appear more than once
playing different roles. The role names are usually useful in
the navigations of models. The rolename/4 clause assigns
a unique role name to each class that participates in the binary
association. The order of names in role names should coincide

with the order of classes in the corresponding associations. If
the role names are omitted in a class diagram, we define the
role names by changing the first letter of the name of target
class to lower case.

rolename(roleid, nameA, nameB, associd).

Associations may also have multiplicities which specify
the possible numbers of links for associated classes. The
multiplicity describes the number of allowable objects of a
range class to link with the objects of a domain class. The
multiplicity/5 clause has a minimum and maximum
number of instances of the target classes, defined by the
lowval and upval attributes. Unbounded ranges can be mod-
elled using the value n for the upper attribute in Prolog.

multiplicity(multid, classid, lowval, upval, associd).

A generalization indicates that one of the two related class
(subclass) is considered to be a specialized form of the other
(superclass). The superclass is a generalization of the subclass.
Generalization relationships form a hierarchy over the set of
classes. A generalization hierarchy ≺ is a partial order on the
set of classes, shown as the generalization/3 clause.

generalization(genid, subid, superid).

We define a recursive function parents to get all superclasses
of a given class as follows.

parents :

{
class→ P(class)
c 7→ {c′ | c′ ∈ class ∧ c ≺ c′}

(1)

The parents/2 clause indicates the parent classes can
be directly or indirectly derived through the generaliza-
tion relationships. We can query the parent classes using
all_parents/2 where findall get all parent classes
from the parents and put them into the variable IDS.

parents(Superid, Subid) :-

generalization(_, Subid, Superid).

parents(Superid, Subid) :-

generalization(_, Subid, X),

parents(Superid, X).

all_parents(Subid, IDS) :-

findall(Y, parents(Y, Subid), IDS).

B. From Object Diagrams to Prolog

The object diagrams show a complete or partial view of the
structure of a modelled system at a specific time. The object
diagrams is composed of the snapshots of running systems. An
instance of a class is called an object, whereas an instance of
an association is called a link that is a connection between two
or more objects of classes at corresponding positions in the
association. The object diagram focuses on the set of objects
and attribute values, and the links between these objects at a
particular time.

Definition 2: An object diagram for a model M is a
structure

σ(M) = {object, link, attrval}.

where
• object is a set of objects.
• link is a set of links connecting objects.
• attrval is a set of functions assigning attribute values to

each object.
The representation of the object diagrams in Prolog is

similar to the representation of class diagrams.

object(objid, objname, classid).

link(linkid, objAid, objBid, associd).

attrval(attrvalid, attrid, value, objid).

The finite sets of object/3 clauses contain all objects and
the finite sets of link/4 clauses contain links connecting
objects. The attrval/4 clauses assign attribute values to
each object. The classid in object/3 should be related
to the classid in class/3, the same as associd and
attrid.

Definition 3: The domain of a class is defined as a set of
object identifiers that are the instances of the class.

domain(c) =
⋃
{objects(c′) | c′ ∈ class ∧ c′ ≺ c}. (2)

where the function objects gets all the objects of a given class.
The domain of a class is defined using recursive predicate
in Prolog. The all_objects_ids/2 returns the list of
objects’ identifiers for a given class identifier.

objects_ids(Classid, Objid) :-

object(Objid, _, Classid).

objects_ids(Classid, Objid) :-

generalization(_, Z, Classid),

objects_ids(Z, Objid).

all_objects_ids(Classid, IDS) :-

findall(Y, objects_ids(Classid, Y), IDS).

IV. CONSISTENCY CHECKING RULES

A. Syntactical Consistency

A metamodel defines the abstract syntax of the models.
The models are syntactically consistent if they conform to
the metamodel. More specifically, the elements of the model
should be the instances of the classes in the associated
metamodel, and the links of two elements are the instances of
associations related by the associated classes in the metamodel.
The MDA is described in four-layer architecture, each layer
model can be regarded as instances of the upper layer model.
The representation of UML concepts in this study is based on
the EMOF metamodel. The models defined in our approach
satisfy the syntactical consistency since they are the instances
of the metamodel.

B. Semantic Consistency

A metamodel may also define a set of validity constraints on
the metamodel using OCL, called semantic consistency [19].
For instance, a class should not define two attributes having
same names. These OCL constraints are defined between the
metamodels and models in order to describe more detailed

models. In a sense, any OCL expressions can be converted
to the Prolog rules having the same semantics. The models
are semantically consistent if the models conform to the rules.
First the OCL representation is presented, and then we give
the Prolog code for these constraints. Only several common
constraints are presented because of the limited space.
Name Unique. The names of classes and associations should
be unique and the names of attributes are unique in one class.

context Class inv:
self.attribute -> forall(a1, a2 : attribute|
a1 <> a2 implies a1.name <> a2.name).

Acyclic Generalization. There are no direct or indirect cycles
in the generalization relationship.

context Class inv :
self.allParents -> excludes(self).

The list_reps/2 shows the repetitions in the list. The list
of names is the first parameter and the result of repetition
elements is the second parameter. The circular generalization
error occurs if any class is in the list of its parents classes.
The inheritSelf returns true if the parameter class X has
cycles in the generalization relationship.

list_reps([],[]).

list_reps([X|Xs],Ds1) :-

x_reps_others_fromlist(X,Ds,Os,Xs),

list_reps(Os,Ds0),

append(Ds,Ds0,Ds1).

x_reps_others_fromlist(_X,[],[],[]).
x_reps_others_fromlist(X,[X|Ds],Os,[X|Ys]) :-

x_reps_others_fromlist(X,Ds,Os,Ys).

x_reps_others_fromlist(X,Ds,[Y|Os],[Y|Ys]) :-

dif(Y,X),

x_reps_others_fromlist(X,Ds,Os,Ys).

canGoTo(X, N, Nodes) :-

member(X2, [X|Nodes]),

generalization(_, X2,X1),

\+ member(X1, Nodes),

canGoTo(X, N, [X1|Nodes]).

canGoTo(_, N, N).

canGoTo(X, Nodes) :-

canGoTo(X, Nodes, []).

inheritSelf(X) :-

canGoTo(X, Nodes), member(X, Nodes), !.

We also offer query interfaces to query properties in SWI-
Prolog. For example, the variable List indicates the set of
the classes’ name and the variable R represents the repetition
elements if there are any repeating elements in the models.

?- bagof(Y,Xˆclass(X,Y,_),List), list_reps(List,R).

C. Horizontal Consistency

The problems of horizontal consistency is caused by the
overlapping elements of different diagrams. There are some
overlapping elements between the class diagrams and object
diagrams. For instance, a class should exist in the class
diagram if the objects of the class exist in the object diagram.

When the inconsistency occurs, we can quickly locate the
wrong place based on the feedback information.
Class Existence. The related classes of objects in the object
diagrams should exist in the class diagrams since the objects
are the instances of the classes.

∀o ∈ object, ∃c ∈ class, o.classid = c.classid.

Association Existence. There are links between objects in
object diagrams and the associations referred to these links
between corresponding classes exist in class diagrams.

∀l ∈ link, ∃o1, o2 ∈ object, ∃a ∈ association,
l.objAid = o1.objid ∧ l.objBid = o2.objid ∧
o1.classid = a.classAid ∧ o2.classid = a.classBid ∧
a.associd = l.associd.

Generalization Satisfaction. If class c1 is a sub class of class
c2, the domain of c1 is a subset of the domain of c2. The set
of objects connected to its subclasses should also be disjoint.

∀c1, c2 ∈ class, c1 ≺ c2 ⇒ domain(c1) ⊆ domain(c2).

∀c ∈ class, domain(c) =
⋃

ci∈sub(c)

domain(ci).

∀c ∈ class,
⋂

ci∈sub(c)

domain(ci) = ∅.

where function sub(c) gets all the subclasses of class c. Note
that the domain of an abstract class is comprised of the domain
of the subclasses since there are no instances of an abstract
class.
Multiplicity Satisfaction. The number of the instances of
an association must satisfy the multiplicity. A set of links
should satisfy the multiplicity specifications defined for an
association. A minimum and maximum number of instances
of target classes must be satisfied using the lower and upper
functions.
∀as ∈ association, lower(multiplicity(as)) ≤

card{l′ ∈ link(as)} ≤ upper(multiplicity(as)).
Part of the representation of the horizontal consistency rules
in Prolog is listed as follows:

object_rule(Objid, Classid) :-

object(Objid, _, Classid),

class(Classid, _, _),
write("Object: "), write(Objid), nl,

write("Class: "), write(Classid).

assoc_exist(Msgid, Sndobjid, Recobjid,

ClassA, ClassB):-

link(Msgid, Sndobjid, Recobjid),

object(Sndobjid, _, ClassA),

object(Recobjid, _, ClassB),

association(_, ClassA, ClassB);

association(_, ClassB, ClassA).

gen_rule(Superid, Subid) :-

generalization(_, Superid, Subid),

all_objects_ids(Subid, IDS), write(IDS), nl,

all_objects_ids(Superid, IDS2), write(IDS2), nl,

subset(IDS, IDS2).

V. REASONING

We provide an automated tool to transform the models into
Prolog. The original models are described in XMI format, gen-
erated directly from the UML CASE tools such as StarUML
and Astah. Then the models in XMI format are transformed
into the Prolog facts automatically. The algorithm of automatic
transformation is shown as follows. The code is also available
online in [22].

Algorithm 1 Transformation From class diagrams To Prolog
Require: The models represent in XMI format.
Ensure: The Prolog Facts of the model.

1: for each packagedElement ∈ uml:model do
2: exact(Class.name).
3: exact(Association.name).
4: end for
5: for each ownedAttribute ∈ uml:Class do
6: if hasAttribute(’association’) then
7: exact(association detail).
8: exact(multiplicity).
9: else

10: exact(attribute).
11: end if
12: end for
13: for each association ∈ association list do
14: exact(rolename).
15: end for
16: for each ownedOperation ∈ uml:Class do
17: exact(operation).
18: end for
19: for each generalization ∈ uml:model do
20: exact(generalization).
21: end for
22: return The Prolog facts of the model.

After the model conversion to Prolog facts, the consistency
rules along with the converted models are import into SWI-
Prolog. The SWI-Prolog checks whether the Prolog-based
models satisfy the consistency rules. The models are consistent
if the models satisfy all consistency rules. If there are any
models that cannot satisfy rules, the SWI-Prolog gives the
error messages. Besides, the query interfaces, similar to OCL,
are provided to query the relevant information in the models.

VI. PERFORMANCE EVALUATION

In order to determine the performance of the translation
and reasoning tools, we conducted an experiments using UML
class diagrams and object diagrams with invariants consisting
of 10 - 437 model elements. We use a desktop computer
with an Intel(R) Core(TM) i5-7400 CPU processor running
at 3.00GHz with 16GB of RAM. The results are shown in
Table I.

The performance tests are conducted for both consistent
and mutated models. The mutated models contain the ran-
domly introduced inconsistencies such as the same names of
models, the direct and indirect cycles in generalizations and

TABLE I
TIME TAKEN BY THE TRANSITION TOOL AND REASONING ENGINES TO

PROCESS UML MODELS

Classes 4 7 16 19 32
Model Element 10 52 107 257 431

Translation time (ms) 9.3 39.1 66.7 140.2 321.3
Valid (ms) 150.2 206.9 359.0 561.3 993.5

Mutated (ms) 165.3 248.1 415.3 613.2 1023.1

the multiplicity inconsistencies between the class diagrams
and object diagrams. For each test, we measure the time
required to translate a model from UML to Prolog and the time
required by the SWI-Prolog reasoner to analyze the models.
The experimental results show that our approach can find
all the inconsistencies mentioned in this paper and the time
complexity of Prolog reasoning the consistencies is linear.

VII. CONCLUSION AND FURTHER WORK

In this paper, we present a Prolog-based consistency check-
ing for UML class diagrams and object diagrams. We have
implemented an automatic transformation from the models
in XMI format to the Prolog facts. Then the SWI-Prolog
is used to check whether the facts satisfy the consistency
rules. The models are consistent if all consistency rules are
satisfied. The reasoning engine will give error information if
any inconsistency occurs. Besides, we provide query inter-
faces, similar with the OCL, to query the relevant information.
Our work provides a novel approach to automatically detect
the consistency of models and promise the errors will not
propagate to the implementation stage.

This study only gives a brief formalization of class diagrams
and object diagrams. However, these diagrams are not enough
to describe the whole system in real world. We expect to
construct a complete UML framework that covers the static
structure and dynamic behavior of the systems. Besides, the
types of consistency checking in this study are far from
enough. More consistency checking rules should be covered
to have a confidence for systems.

VIII. ACKNOWLEDGEMENT

This work was partly supported by National Natural Science
Foundation of China (Grant No. 61872145) and Shanghai

Collaborative Innovation Center of Trustworthy Software for
Internet of Things (No.ZF1213).

REFERENCES

[1] G. Booch, The Unified Modeling Language User Guide, Pearson Edu-
cation India, 2005.

[2] R. Van Der Straeten, J. Simmonds, and T. Mens, Detecting Inconsisten-
cies between UML Models Using Description Logic, Description Logic,
vol. 81, 2003.

[3] J. Woodcock and J. Davies, Using Z: specification, refinement, and
proof, Prentice Hall Englewood Cliffs, vol. 39, 1996.

[4] C. Snook and M. Butler, UML-B: Formal modeling and design aided
by UML, ACM Transactions on Software Engineering and Methodol-
ogy(TOSEM), vol. 15(1), pp. 92–122, 2006.

[5] R. S. Bashir, S.P. Lee, S.U.R Khan, V. Chang, and S. Farid, UML models
consistency management: Guidelines for software quality manager,
International Journal of Information Management, vol. 36(6), pp. 883–
899, 2016.

[6] G. Engels, J.M. Küster, R. Heckel, and L. Groenewegen, A methodology
for specifying and analyzing consistency of object-oriented behavioral
models, ACM SIGSOFT software engineering notes, vol. 26(5), pp. 186–
195, 2001.

[7] A. H. Khan and I. Porres, Consistency of UML class, object and stat-
echart diagrams using ontology reasoners, Journal of Visual Languages
& Computing, vol. 26, pp. 42–65, 2015.

[8] M. Soeken, R. Wille, and R. Drechsler, Verifying dynamic aspects of
UML models, Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1–6, 2011.

[9] J. Chimiak Opoka, M. Felderer, and C. Lenz and C. Lange, Querying
UML models using OCL and Prolog: A performance study, IEEE
International Conference on Software Testing Verification and Validation
Workshop, pp. 81–88, 2008.

[10] Z. Khai, A. Nadeem, and G. Lee, A Prolog Based Approach to Con-
sistency Checking of UML Class and Sequence Diagrams, International
Conference on Advanced Software Engineering and Its Applications,
pp. 85–96, 2011.

[11] M. Egea and V. Rusu, Formal executable semantics for conformance in
the MDE framework, Innovations in Systems and Software Engineering,
vol. 6(1-2), pp. 73–81, 2010.

[12] H. Störrle, A Prolog-based Approach to Representing and Querying
Software Engineering Models, VLL, vol. 274, pp. 71–83, 2007.

[13] P. Krishnan, Consistency checks for UML, 7th Asia-Pacific Proceedings
on Software Engineering, pp. 162–169, 2000.

[14] A. Tsiolakis, Consistency analysis of UML class and sequence diagrams
based on attributed typed graphs and their transformation, ETAPS 2000
workshop on graph transformation systems, 2000

[15] L. C. Briand, Y. Labiche, L. Osullivan, and M.M. Sowka, Automated
impact analysis of UML models, Journal of Systems and Software, vol.
79(3), pp. 339–352, 2006.

[16] D. Torre, Y. Labiche, and M. Genero, UML consistency rules: a
systematic mapping study, 18th International Conference on Evaluation
and Assessment in Software Engineering, pp. 6, 2014.

[17] D. Torre, Verifying the consistency of UML models, 2016 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops, pp.
53–54, 2016.

[18] G. Spanoudakis and A. Zisman, Inconsistency management in software
engineering: Survey and open research issues, Handbook of software
engineering and knowledge engineering, vol. 1, pp. 329–380, 2001.

[19] X. Thirioux, B. Combemale, X. Crégut, and P. Garoche, A framework
to formalise the MDE foundations, International Workshop on Towers
of Models, pp. 14–30, 2007.

[20] A. Endres and H.D. Rombach, A handbook of software and systems
engineering: Empirical observations, laws, and theories, Pearson Educa-
tion, 2003.

[21] J. Cabot, R. Clarisó, and D. Riera, On the verification of UML/OCL
class diagrams using constraint programming, Journal of Systems and
Software, vol. 93, pp. 1–23, 2014.

[22] F. Sheng, Transformation from UML to Prolog.
“https://github.com/shengfeng/xmi2pl”, 2018

