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Abstract—Code clone detection is a very hot topic in the
field of software maintenance, reuseability and security. There
is still a lack of techniques to detect near-miss clones at different
level of granularities, especially in big code. This paper presents
Distributed Code Clone Detection (DCCD) technique, which
detects clones from big code bases based on feature extraction.
We performed preprocessing, indexing and clone detection for
almost 27 TB of source code (324 billion LOC), DCCD is quite
faster and efficient as compared to existing distributed indexing
and clone detection techniques, i.e. 36 times faster than Benjamin
technique, which is 86 times faster than CCFinder. These two
techniques are also distributed and just detect Type-1 and Type-
2 clones, but our technique DCCD even detects Type-3 clones,
efficiently. Our approach is faster, flexible, scalable and provides
87% accurate results with authenticity, ease of accessibility,
upgradeability and maintainability.

keyword Clone detection, Software maintenance, Software
reuse, Big code, Similarity/Plagiarism detection

I. INTRODUCTION

When a programmer copies code fragments and tries to
reuse them by pasting in other code sections with or without
making minor modifications, this type of code reuse approach
is called code cloning, and the pasted code fragment called a
clone of the original. It is a very adapting process in software
development activities. However, during detection of clones,
it is hard to say that which code fragment is original and
which code fragment is copied. Code clones bring troubles
in software security and maintenance and they lead to bug
propagation. Roy describes that a very significant range (7% -
23%) of code is cloned in large scale systems [1]. Code clone
detection techniques are very helpful for code maintainability,
code plagiarism detection [2] [3], code verification, copyright
detection, security flaws detection, detection of bugs and
malicious software detection.

Our developed platform provides an index-based hybrid
solution (semantic approach) by combining different clone de-
tection techniques for large scale systems which is distributed,
scalable and incrementable. It detects Type-1, Type-2, Type-3
code clones in real time environment on the basis of big code.
Our system is based on Hadoop environment, which extends
a practical applicability of index based clone detection for
very large code bases and it demonstrates the response time
sufficiently fast. Our technique has been developed and tested
to detect code clones in 15 different programming languages
i.e. Java, JavaScript, C, C++, C#, Xml, Python, Php, Sql, Vb,

Cobol, Text, Ruby, Ada, Matlab. In this paper, we will discuss
and display results of 3 programming languages on large scale
level, which are Java, JavaScript and C/C++. The downloaded
source code was about 40 TB (20 TB C & C++, 10 TB
Java, 10 TB JavaScript), but the experiment of preprocessing,
indexing and feature extraction was performed on almost 27
TB (C & C++: 16 TB, JavaScript: 11 TB, Java: 1 TB) source
code. The main purpose of our research was to deal with the
big code on a large-scale level and detect near-miss clones
accurately, which is not only challenging but computationally
expensive. We preprocess source code using different mining
techniques/filters, extracting main features and store the index
information into a database for further inspection process of
clone detection. Preprocessing, normalization, feature extrac-
tion and indexing process were performed in a pipeline, so
index creation is actually fully depended on the output of
preprocessing of source code. The top level view of whole
system has been shown in Fig 1. Index based [4] and CCFinder
[5] are two token-based distributed clone detection techniques
but they just only detect Type-1 & Type-2 clones, and even not
support big code indexing and detection process. Our approach
detects Type-1, Type-2, Type-3 clones with high accuracy rate,
meanwhile it’s incremental, scalable and fast.

II. DCCD ARCHITECTURE

In this section, we briefly describe all the steps and phases
of the proposed DCCD clone detection architecture. The
proposed work is the hybrid technique of clone detection for
large-scale systems, in which we have applied many screening
filters to retrieve exact clone files from big code bases. Clone
detection process comprises of many phases, where each
next phase depends on the previous phase and builds on the
outcome of the previous phase. There are four main phases
in our clone detection approach as shown in Fig 1. Fig 2
shows the technical view of preprocessing and normalization
process. The left side of Fig 2, correspondence between an
original code fragment and the preprocessed and normalized
code fragment is visualized. On the right side of Fig 2, the
indexing entities and chunk properties have been shown, where
MD5 are the hash values of the prefix and suffix sequence
of statements, of the source code file. The reason we used a
sequence of statement during indexing instead of individual
statement is that the sequence of statements are more unique
and identical. FNV values are the 10 hash values per division
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Fig. 1: DCCD System top level view

Fig. 2: The original source code (left), its normalization
(middle) and indexing info (right)

of a file. The Chunk properties are the feature, which we use
for comparison of two files.

A. DCCD Preprocessing and Normalization

This is the first phase, which removes uninteresting and
unwanted pieces of codes from source files. There are three
major processes of this phase. (a) It reads source code files
from disk and splits the code into tokens. (b) Remove all
uninteresting pieces of code from the source code files. (c)
Normalization is performed on these tokens. These tasks have
been explained below in detail.
Loading: It reads the selected project files from the hard disk
and load into RAM for further processing.
Transformation: In this task, we select the language type of
project and consider the related source code files of that project
and ignore all unwanted files.
Tokenization: After full transformation of source code into a

byte stream, we start tokenizing the code sequence. The main
purpose of this process is to organize source code in tokenized
form line by line. Then lexical analyzer uses each traversal at
the same time to tokenize. Finally, the corresponding token
sequences are generated and stored in memory.
Normalization: During normalization, we delete the unwanted
tokens, comments, spaces, import libraries and the tokens
which do not have any effect on the source code.
Chunk Formation: After token normalization, we initialize
an empty entity set (chunk), each attribute in the entity set
initialized as null. We use this formation to make chunk ready
to store Elements (feature), meanwhile, we identify the size
of the chunk. After performing this task, we able to have
preprocessed code, in which identifiers replaced with ID plus
numbers (starts from 0); a string replaced by an empty string;
fixed string with some identified characters; floating types with
0, and boolean values into true as shown in Fig 2.

B. Feature Extraction

This phase is the core part of our clone detection technique
because these extracted features help us to detect code clones.
Feature extraction basically involves reducing the amount of
code to describe a big code base by extracting features from
it. This phase consists of many steps, some of them performed
in parallel and some of them performed in pipeline. The left
side of Fig 3 shows the flow of each process into 5 steps,
the right side displays the HBase entities, which we extract
and store into HBase, i.e. Row_key, Origin_id, Elements,
Units and All.

Step 1:This step actually gets the source code project files
from code repository in pipeline. The source code of these
files further converted into bytecode by using preprocessing
and normalization phase.
Step 2: In this step, we use MD5 hashing algorithm as a
feature extraction from the source file to differentiate the
uniqueness of every file. MD5 encrypt the prefix 15 token
statements and suffix 15 token statements of every source code



Fig. 3: Feature extraction from source code files

file. The reason to use 15 tokens of prefix and suffix is to define
a unique signature set of every source file.
Step 3: In this step, we extract another feature from the source
code files by using FNV (Fowler-Noll-Vo)1 hashing algorithm.
The reason we use FNV is that it quickly hashes the large
amounts of data with a small conflict. The FNV hash has
been generated for every token of the source file.
Step 4: In this case, we collect 100 hash values in total
then add all of these values into one single value (long
integer). These FNV hash values actually represent the overall
characteristics of a file.
Step 5: The final step of feature extraction is to creating
chunks on the basis of extracted features in previous steps.

C. Feature-Based Index Creation

Indexing allow to find all clones against a single file or for
an entire system. Meanwhile it allows to update index info,
when files are removed, modified, or added. Indexing based
on feature extraction is the main data structure in our code
clone detection technique. The index creation process is very
flexible, fast, accurate, easy to maintain and upgradeable. We
can update, delete or edit index information from HBase of
any file at any time. Meanwhile, we can keep track and retrieve
the index information of any file in less than a microsecond.
The indexing data consists of following a list of labels, which
describes the entities of HBase.
Row_key: It is MD5 hash value of the prefix (H1) and suffix
(H2) statements of the source code files.
Origin_id: It is the file path or location of a file.
Element: It is 100 FNV hash values of a file.
Units: It is the total size of tokens inside the concerned file.
All: It is the sum of 100 FNV hash values.

To build an index of big code, we used Hadoop distributed
framework. There are 7 systems in the cluster, one Master
(Intel i7, 32GB) and six Slaves (Intel i5, 16GB). To perform
experiment, we built an index of almost 27 TB of source

1http://www.isthe.com/chongo/tech/comp/fnv/index.html

Fig. 4: MapReduce view for clone retrievals

code (16 TB C/C++, 10 TB JavaScript and 1TB of Java).
This collection of source code for indexing was consisting of
1,039,260 projects, 885 million files and 324 billion of LOC.

D. Code Clone Detection and Retrieval

This is the final phase, in which we retrieve and display the
similarity between systems at different level of granularities,
i.e. method level, chunk level, file level and project level.
During detection, we filter, extract and retrieve all cloning
objects, which meets the defined cloning filter conditions
(Filter-1,2,3,4) as shown in Fig 4. The mapper (map reduce)
retrieves all code clones and calculates the fraction of all files
in the index, which at least contained one clone. We extract
all clones against every single file of the test project.

In the first filter, the detector detects all the cloning files
from big code repository by comparing indexes, which have
the same Row_key (M1 hash $ M2 hash) values, where M1
is the hash value of prefix token statements and M2 is the hash
value of suffix token statements. Then, we apply another filter
to get more abstract cloning files from large scale code. In this
process, we compare the sum of 100 FNV hash values (All)
in the index database, which were stored in HBase during the
building of index of big code. We continue applying filters to
get abstract scale code base from big code. In next filter, we
compare the 100 FNV hash values (Elements) of the test file
in the index and retrieve the resulted clone files. This Element
entity of index consists of the 100 FNV hash values. Finally,
after getting the abstract cloning files, we further evaluate them
for exact clones by using Minhash algorithm. According to the
idea of Minhash algorithm, the similarity can be calculated by
the following formula. Similarity (A, B) = ( A ∩B / A U B).
Where A ∩B is the number of code fragments, which are
same in file A and in file B, A U B represents the total
number of different code fragments in file A and in file B.
In last step of detection and retrieval of code clone files.
The detector uses SSH (Secure Shell) protocol to send, to
be tested files in distributed environment to every attached
node in the cluster. These files divided into chunks, generating
the md5 hash values of defined chunks size (adjustable) and
perform the further comparisons to detect exact clones. After
getting same code fragments the detector evaluates the results,
combined them and display to the users.



TABLE I: Building Index Results

Language Size Time (hours) No of Projects No of Files (millions) LOC (billions) Query Response per file (sec)

C & C++ 16 TB 135 548,150 493 207 1.30
Java 1 TB 6 17,822 14 4 0.75

JavaScript 10 TB 65 473,228 378 113 0.95

Configurable Threshold Value: The threshold value is fully
configurable by the user. It is also possible to detect clone
fragments at different level of granularities, i.e. chunk level,
method level, file level and project level. We note that we
found the precision and recall to be optimum at 70% threshold.
If we set threshold value high than 70%, the retrieved results
will be more of Type-3, but it will be very less effect on Type-1
and Type-2 clones.

III. CASE STUDIES AND RESULTS

In this section, we summarize the implementation and
results of our proposed technique (DCCD) for batch clone
detection and distributed clone detection in big code. Here
are different case studies and RQs (research questions) on
collection of big code, indexing, response time, detection of
clones and their results comparison. Here are the main RQs,
we formulated in our study:

• RQ1: How is the speed of index creation and how much
storage space does it occupy in memory?

• RQ2: In what semantics DCCD produce better results as
compare to previous state-of-the-art methods?

• RQ3: Does DCCD support partial level and full level
similarities detection?

• RQ4: Is the DCCD technique scalable and efficient as
compared to other clone detection techniques?

A. Collection of Source Code

To perform the assessment test on DCCD, the big code was
required for our source repository. We collected almost 40 TB
(C & C++: 20TB, Java: 10 TB, JavaScript: 10 TB) of source
code. Our big code collection was consisting on thousands of
projects, millions of project files and billions of LOC.

B. RQ1: Indexing Speed and Storage

Hadoop distributed environment is used to build an index
of large scale system in a fast and efficient way. There were 7
machines (1: Intel i7, 32GB and 6: Intel i5, 16GB) in Hadoop
environment. But only 5 Machines used for performing pre-
processing and building index simultaneously. Table I shows
the indexing results of 27 TB source code. The total indexed
information size is almost 3 TB of 27 TB source code, which
is quite small in size as compare to Benjamin [4] technique
(3 times of original system).

C. RQ2: DCCD vs State-of-the-art Methods

In a comparison of old preprocessing, indexing and clone
detection techniques, our approach is much faster as shown
in Table II. In Benjamin [4] technique, they used 100 Google
machines to build 73 million LOC source code in 3 hours on

Intel Xeon processor with 3GB RAM, which was 86 times
faster than CCFinder [5] technique. In our approach, we just
spend about 45 minutes to build the same amount of source
code (73 million LOC) using 5 distributed systems (Intel
i5, 16GB). CCFinder processed 400 MLOC on 80 machines
(Pentium-4:3Ghz, 1GB RAM) in 51 hours, in our case we
processed 400 MLOC in almost 5 hours on a single machine
(Intel i5, 16GB). CCFinder [5] and Benjamin [4] just detected
Type-1 and Type-2 clones. The most important achievement is
that while they only detect Type-1, Type-2 clones. We detect
all three types of clones in less time with big code, even though
it was very challenging.

TABLE II: Build Index Speed Comparison

Technique Machines LOC(Million) Time(Hours) Clone Types

CCFinder 80 400 51 T-1, T-2
Benjamin 10 73 3 T-1, T-2
DCCD 5 3300 6 T-1, T-2, T-3

D. Batch Clone Detection

This case study shows that our feature extraction approach
in the case of batch clone detection produces very good results.
We used two open source projects of C and Java language as
test projects. In the comparison of our technique (DCCD) with
others techniques, i.e. Suffix-tree and Benjamin, the execution
time of our approach is quite fast as shown in Table III. For
each of the testing systems, DCCD is fast and meanwhile, it
detects 3 types of clones, which is not possible in other 2
techniques.

TABLE III: Clone Detection Execution Time Comparison

Techniques Jabref Linux-Kernel Clone Types

Suffix-tree 7.3 sec 166 min 13 sec T-1, T-2
Benjamin 6.7 sec 47 min 29 sec T-1, T-2
DCCD 5.2 sec 20 min 40 sec T-1, T-2, T-3

E. DCCD (Distributed Code Clone Detection)

For the scalability and performance evaluation of our plat-
form & algorithm to a large code base. Clone detection was
performed through MapReduce, which retrieves all clones and
calculates clone coverage for all project files in the index.
In addition, to evaluate the scalability for ultra large code
scale systems, we selected some subject systems including,
e.g. Linux 2.6.33, Harvey, Cinder, PostgreSQL, OpenCV and
Arduino. The detection processed 16.5 MLOC of C /C++
code of 37,398 files. In our experiment, we applied different
filters of code clone detection method on every test project,
the graphical representation have been shown in Fig 5.



TABLE IV: Detection Results Against their Files, LOC, Time and Clone Types

Test Projects Total Files LOC Detection Time Type-1 Clones Type-2 Clones Type-3 Clones

Linux 2.6.33 25,717 11,267,973 3 hours 20 min 1867 1443 3031
Harvey 3,761 1,307,197 22 min 37 sec 1460 546 917
Cinder 2,955 1,180,935 14 min 25 sec 1127 157 307

PostgreSQL 1,906 1,332,103 17 min 15 sec 889 356 373
OpenCV 2,379 1,141,501 13 min 48 sec 273 63 88
Arduino 680 277,710 9 min 33 sec 62 25 69

TABLE V: Retrieved Results Against Each Filter

C&C++ repository info: (Code: 16 TB, Files: 493 Million,
LOC:207 billion)

Test Projects Filter-1 Filter-2 Filter-3 Filter-4

Linux 2.6.33 99,031 95,471 78,570 66,034
Harvey 82,013 51,492 35,301 31,101
Cinder 57,788 37,031 25,701 13,876
PostgreSQL 40,371 27,096 19,811 14,503
OpenCV 17,359 10,782 8,703 5,609
Arduino 10,093 7,182 3,935 1,808

Fig. 5: Graphical representation of Table V

Table IV shows the test projects against their total number
of project files, LOC, detection time and a number of clones
of Type-1, Type-2, Type-3 in each testing project.

F. RQ3: Detection of Full Level and Partial Level Similarities

During full application similarity detection, we detected
almost all cloning files from our big code base repository
against our subject system entitled Linux-Kernel as the results
have been shown Table IV. In the case of partial similarity
detection, our approach successfully found the systems from
code base, which are sharing some source files or part of their
source codes. Both full and partial level of similarity detection
basically requires finding the similar code fragments in source
code.

G. RQ4: System Scalability and Efficiency

The execution time actually scales with the size of processed
code (LOC) by a tool. As we used MapReduce model for
parallel and distributing processing in a cluster, which increase
the scalability and efficiency of our approach, meanwhile it
is very cost effective and affordable solution. The DCCD

approach is able to scale 324 billion LOC, as it has been
tested. The DCCD execution time of indexing and detection is
quite faster than other techniques [6]. It is the only technique
which has detected Type-1, Type-2 and Type-3 clones from
big code source repositories of 27 TB. As the cluster was also
used for other purposes, so we measured the time based on its
overall load. The results from these case studies show that our
proposed approach is very capable of supporting distributed
code clone detection and batch clone detection in real time
environment for big code bases.

IV. RELATED WORK

Recently, many clone detection approaches have been de-
veloped for small scale and large scale systems [7] [6] [8]
[9] [10] [11] [12] [13] [14] [15] [16] [17] [18], which detects
clones on different level of granularities. Bundle of code clone
detection techniques even for Java Bytecode [19] already have
been proposed and implemented [20] [21] [22]. Their results
and method have been employed by code clone management
tools [23]. Some methods were implemented and embedded in
programming platforms, for example, SimEclipse (clone detec-
tor plugin), Visual Studio and so on [24]. NICAD [25] by Roy
is also considered as hybrid approch. NICAD technique uses
Longest Common Subsequence algorithm to compare lines of
source code [26]. The lexical approaches include CCFinder
[5] by Kamiya, CP-Miner by Zhenmin, Boreas by Yong and
Yao, FRISC by Murakami, and CDSW by Murakami [20] [27].
The token matching suffix tree based algorithm was used by
CCFinder to find out all similar token sequences. Recently
there is a tool SourcererCC [24], which performs code clone
detection to big code but data set is not big as compared
to DCCD, and it is not distributed. Meanwhile we explored
different syntactical approaches, i.e CloneDr et al., Wahler
et al., Koschke et al. [27], Jiang et al. Hotta et al. Mayrand
et al, Kontogiannis, Kodhai, et al. Abdul-El-Hafiz, Kanika et
al. [20] [2]. Metric-based [28] need parser to obtain values
of metrics, and even it is possible that two code fragments
having same metric values maybe not similar code fragments.
CONQAT [29] [30] considered as hybrid, clones are detected
in main three phases. During our review study in this field, we
explored some important semantic techniques, i.e. Komondoor
and Horwitz (PDGs using CodeSurfer), Duplix (PDGs) by
Krinke et al., GPLAG (PDGs using CodeSurfer) by Liu et
al, Higo and Kusumoto (PDGs using CodeSurfer), ConQAT
(Suffix-tree-based, Token) [4], Funaro (AST) and Agrawal
(Tokens) [20]. PDG based techniques are not scalable for large



scale systems [23] [29], because it needs a PDG generator and
graph matching, which is little bit expensive.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a Distributed Code Clone Detec-
tion (DCCD) technique for token-based code clone detection,
which retrieves clones in an efficient way. It exploits an index
of source code to achieve the scalability and maintenance of
large scale project repositories for big code. The index of 27
TB source code (C, C++, Java, JavaScript) has been built in
less than a month. To the best of our knowledge, this is the
first approach which has been implemented for large scale
systems, which is have been experimented on 27 TB of source
code, meanwhile it detects all 3 types of clones very efficiently,
especially Type-3 which was very challenging in large scale
system. DCCD has been achieved a high accuracy (87%) rate
in clone detection for large scale system. DCCD can be adopt
at industry level for the detection of clones in big code, which
is easily extendible and cost effective. For future concerns, our
next target is to extend the current work and continue building
a big index for other programming languages i.e. Python, Php,
Xml, C#, Vb, Cobol, Text, Sql, Matlab, Ruby, Ada. Meanwhile
we are considering to add additional functionalities related to
vulnerabilities detection in systems.
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