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(?)Sorbonne Universités, UPMC Univ Paris 06, CNRS
Laboratoire d’Informatique de Paris 6

Paris, France
jean-pierre.briot@lip6.fr
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Abstract - The concept of Quantified Self is about con-

nected objects self-monitoring their human owner (e.g., a
watch measuring heart rate, etc.). A natural transposi-
tion is in self-monitoring arbitrary things, therefore named
Quantified Things. In this paper, we present the case of
self-monitoring agricultural products. We discuss the ra-
tionales for the design of a Quantified Fruit multi-agent
architecture for self-monitoring and self-prediction of the
maturation of fruits. The architecture includes 6 different
types of agents, the 2 more specific ones being respectively,
the self-controller equipped with various sensors and the
self-prediction module. Our current implementation uses
an Arduino microcontroller board with 5 sensors (measur-
ing respectively: temperature, light, humidity, hydrogen and
methane). The prediction module uses a neural network.
We have implemented the architecture and have conducted
various experiments, storing bananas in diverse settings:
room, refrigerator, in a box, with other fruits, etc. The pa-
per discusses the architecture, its current implementation,
experiments and current results. Future issues (scalability,
collaborative prediction, etc.) are also addressed.

Keywords – Quantified Self; Quantified Things; In-
ternet of Things; microcontroller; software; architec-
ture; design; implementation; agent; multi-agent sys-
tem; monitoring; prediction; machine learning; neural
network; fruit; banana; maturation; logistics.

1. Introduction
As Swan [1] suggests, the concept of Quantified Self

(QS) represents the capacity for connected objects to self-
measure and self-monitor their human owner. Examples are
connected watches or phones that measure heart rate, pres-
sure, exercising habits, etc. Capacities for analysis, patterns
detection and prediction (using statistical analysis and ma-
chine learning techniques) may be included in order to in-
fer personalized monitoring and diagnostic, e.g., for health
monitoring.

In this work, we investigate the adaptation of this idea
to arbitrary things, therefore named Quantified Things [2].
Some early examples are Quantified Cars [3], using the
large electronic monitoring and control facilities of a car

to monitor, diagnose and control various features of a car.
Swan suggests the use of “QS car chips” to collect cars
automotive data and store these informations in a cloud
database. By using a mobile application, users could
have access to their car’s information, such as maintenance
records, suggested and scheduled maintenance, and take
more accurate action as a result.

We have decided to address the case of agriculture food
products which, to our knowledge seems a domain yet little
explored. In particular, the lifecycle of fruits has an impor-
tant impact on its economy. An important issue is indeed to
minimize the loss of fruits too mature to be consumed and at
the same time to minimize the risk of shortage of products
for the consumers. This is specially true in the case of ba-
nanas, a fruit having a relatively short ripening period, and
very much depending on various conditions (temperature,
humidity, light, aeration) [4]. Therefore, important deci-
sions must be taken at various steps of the lifecycle: when
to best harvest the fruits, depending of the expected travel
(type and duration) to the consumer, how to best transport
them, how to store them, at a large scale in a storage or a
grocery store, down to the consumer house, etc.

In order to explore these issues, we have designed a pro-
totype multi-agent architecture for Quantified Fruits. Its ob-
jective is self-monitoring and self-prediction of fruit matu-
ration. We have tested the architecture in the case of ba-
nanas and have evaluated it as a proof of concept. The pro-
posed architecture includes various types of agents, imple-
mented in the JADE framework: an Arduino programmable
microcontroller board with various sensors (temperature,
light, humidity, hydrogen, methane), a user interface and a
neural network-based prediction module. We have selected
these sensors based on some works [5, 4] that investigate
various factors that interfere on fruit’s perishability.

2. Related Work
Some researchers have proposed the use of sensors in

the agriculture supply chain. Most of them investigate how
technology can be used to improve farming practices, such
as collecting information about the land conditions and cli-
mate variability and helping farmers to avoid inappropri-
ate farming conditions [6, 7]. However, even though the
percentage of agriculture food products losses after picking
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step is extremely high, there have been very few investi-
gations into what are the satisfactory conditions to prolong
perishable shelf life in the other supply chain steps, such
as distribution. Lang et al. [8], for example, suggest the
development of an intelligent container for monitoring tem-
perature parameter during food transportation. Nonetheless,
they do not present experimental results. In addition, their
model takes only temperature into account for monitoring
the quality of the product.

Examples of software architectures for IoT are the Fed-
Net service-based framework [9] and the multi-agent-based
middleware ACOSO [10]. As we will see, our architecture
is more light weight and more specific to our objective.

3. Application Scenario

3.1. Setting

In our first scenario, we consider a user having at home
a set of bananas that he bought and he would like to know
what are the best ways to store bananas and how to predict
their maturation. We have selected the case of bananas, be-
cause: 1) the interaction between the lifecycle of tropical
fruits and the logistics for maturing, transporting and stor-
ing them is critical and with an economic impact; 2) they
have a relatively short lifespan, therefore we can conduct
shorter experiments. Different ways of storing bananas may
be considered and tested: in a room, in a refrigerator, in a
box, alone or with other fruits, etc. A self-monitoring de-
vice (described below) is associated to a banana (located on
its side) in order to provide the self-monitoring capacity.

3.2. Requirements

Some of the requirements for our application are:

• a software architecture to autonomously provide self
measurement and prediction of fruit maturation. It
should provide some pro-activeness capacities, such as
to self assess its prediction accuracy and if necessary
revise its prediction model.

• the architecture must be decentralized, interoperable
and light weight, in order to work with different types
of microcontrollers, resources and constraint settings
(local computing, cloud, network protocol, etc.).

• the architecture should be easy to deploy (with some
auto-deployment and configuration ability) and evolv-
able at design time as well as run time (discovery of
new quantified things devices and modules, specially
in the context of collaborative applications, see § 6.4).

• a user interface running on a smartphone (or tablet) for
the user to control experiments and input some data.

4. Proposed Architecture
4.1. Conceptual Architecture

In order to offer a decentralized and collaborative ar-
chitecture with such requirements (autonomy, pro-activity,
decentralization, inter-operability, easiness to deploy, and
furthermore ability to seamlessly incorporate future evolu-
tions, such as collaborative Self Things, see § 6.4), a natural
choice was to use a multi-agent approach (see for instance
[11] for a more detailed argumentation). Therefore, the var-
ious autonomous modules (monitoring, learning module,
data base, user interface, etc.) are encapsulated into various
interacting agents. The conceptual architecture proposed is
shown at Figure 1. It includes the following components:

• QuantifiedFruitAgent, which encapsulates the mi-
crocontroller and its sensors used for self-monitoring.

• PredictionAgent, which encapsulates the machine
learning module to make the prediction.

• TrainingAgent, which encapsulates the training algo-
rithm which will set up PredictionAgent parameters.

• DataBaseAgent, encapsulating the various data of the
experiments, notably the training set.

• UserInterfaceAgent, encapsulating the interface
with the user.

• PlugAndPlayAgent, responsible for discov-
ering a new QuantifiedFruit, creating a new
QuantifiedFruitAgent, configuring and connecting
it to the architecture components.

Figure 1: Conceptual architecture.

PlugAndPlayAgent creates a QuantifiedFruitAgent
for each Arduino board that is connected to the sys-
tem and associates it with a specific PredictionAgent.



DatabaseAgent is shared among all agents, allowing them
to share information, such as the self-tracking and predic-
tion data. It could be noted that the database does not need
to be an agent, but encapsulating it into an agent (agenti-
fying it) brings uniformity to the architecture and the com-
munication between its components, as well a potential of
flexibility for the future.

4.2. Current Implementation and Configura-
tion/Deployment

Current implementation and configuration/deployment
of the architecture is as follows. Each agent is implemented
as a JADE agent, using the JADE multi-agent infrastructure
[12]. JADE provides the support for the interoperability and
the distribution of the agents.

• QuantifiedFruitAgent encapsulates an Arduino mi-
crocontroller [13] and its 5 sensors, respectively mea-
suring: methane, hydrogen, temperature, humidity,
and light. It runs on a Java server. There is one
QuantifiedFruitAgent for each Arduino board con-
nected to the system.

• PredictionAgent encapsulates an artificial neural
network (ANN) used for prediction. It runs on a Java
server. There is one PredictionAgent, shared by the
different QuantifiedFruitAgent agents.

• TrainingAgent encapsulates both backpropagation
and prediction error minimization algorithms for train-
ing the neural network [14]. It runs on a Java server.

• DataBaseAgent encapsulates a data base contain-
ing the various data of the experiments. It is cur-
rently implemented as a simple table. There is one
DataBaseAgent shared by all agents.

• UserInterfaceAgent encapsulates the user-interface
running on a smartphone or a tablet, implemented in
Java. It runs on a smartphone.

• PlugAndPlayAgent is using a discovery protocol sim-
ilar to Jini Lookup Discovery Service [15]. It runs on
a Java server.

In current configuration, there is only one
PredictionAgent and one ConfigurationAgent.
This means that there is no heterogeneity and all fruits
tested are considered to be of the same type. A larger
experiment may introduce different types of fruits and
associated PredictionAgent agents.

Note that current configuration of the architecture is ob-
viously not scalable, but its configuration can be adapted
as will be discussed in § 6.3. More generally speaking, de-
pending on the availability of resources on the underlying

computing and communication architecture, we may de-
cide to allocate different agents on different spaces (local,
global/shared, hierachical. . . ) and also make various deci-
sions on what agents should be shared or replicated.

Prediction Agent

We have decided to use an artificial neural network (ANN)
architecture for the prediction module. The reason is as
following: ANNs are well known architectures and they
have proven their efficiency and moreover versatility. As
opposed to linear or polynomial regression modules where
one has to a priori select a model (linear, quadratic, cubic,
including product of features, etc.), the model of a neural
network is generic enough although some configuration has
to be decided (e.g. the number of hidden layers, the number
of units of the hidden layer(s)).

The neural network includes an input layer with 5 units
(corresponding to the 5 parameters produced by the 5 sen-
sors), one hidden layer with 4 units and an output layer with
one unit (corresponding to the number of days predicted).

The neural network is implemented in Java. We have
also implemented a second version in the Octave/Matlab
numerical computation programming language, in order to
exploit vectorization of data computation and to conduct
further analyses (see § 5.4).

Training Agent

Our current method for training the neural network (adjust-
ing the weights of the neuron connexions in order to min-
imize the error (differences) between predicted and target
values) is quite standard: 1) using backpropagation algo-
rithm (to compute the gradients) [14]; 2) combined with an
algorithm to minimize the cost function (prediction error)
– we have tried out batch gradient descent well as generic
optimization algorithms (from off-the-shelf libraries).

Note that, in addition to traditional off-line learning ap-
proach, we also experimented with a (simplified) incre-
mental learning approach, where PredictionAgent pro-
actively self-assesses its prediction accuracy and if neces-
sary requests TrainingAgent to incrementally update its
prediction model by launching a new learning phase on the
new example(s) (in a similar way to on-line learning).

User Interface Agent

It runs on a Java mobile application in order to allow
mobile users to monitor fruit storage. This application
lists all fruit storages that are connected to the system.
After the mobile user selects one of these fruit storage,
UserInterfaceAgent will retrieve from the database all
the respective information – monitoring data and prediction
– and show it on the interface. In addition, this applica-
tion has an input field for the user to enter the effective (ob-
served) fruit lifespan. UserInterfaceAgent will then com-
municate this new experimental data to DatabaseAgent.



5. Experiments and Evaluation
5.1. Experimental Setting

The user will try various ways for storing a banana, tak-
ing four condition parameters into account: (i) dark (i.e. in
a closed or open box); (ii) room (i.e. the box being stored
in a fridge or at room temperature); (iii) rotten fruit (i.e. in
a box alone or putting together with a rotten); and (iv) ripe
fruit (i.e. putting together with a ripe fruit).

Below, we detail four of the possible settings for storing
a banana (summarized at Table 1 and depicted at Figure 2):

(a) In an open box, at room temperature, alone;
(b) In an open box, together with a rotten fruit;
(c) In the fridge, with a ripe fruit;
(d) In a closed box, at room temperature, with a rotten

fruit.

Table 1: Configuration of experiments at Figure 2.

Experiment Box Room
Rotten

Fruit

Ripe

Fruit

open close room fridge yes no yes no

(a) X X X X

(b) X X X X

(c) X X X X

(d) X X X X

Figure 2: Examples of scenarios.

For each setting, a user creates a new experiment on his
smartphone user interface. Then, he triggers the measure-

ment of the parameters (light, temperature, methane, hydro-
gen and humidity), which will be recorded in the database.
He then later checks (usually every day) the maturation of
the fruit and reports on the interface when the starting mat-
uration occurs. This process was essential to elaborate an
initial database to improve system’s predictions. In practice,
we have conducted several experiments in parallel, putting
a dozen of bananas in different settings and monitoring in
parallel their respective maturation process.

Following standard methodology in machine learning,
we have partitioned our dataset into a training set and a test-
ing set. (We also have used a cross validation subset for
detailed analysis, see § 5.4).

5.2. Training Set

Table 2 shows a subset of the training set used, which
represents the data collected from the experiments illus-
trated at Figure 2. At the beginning of each experi-
ment, QuantifiedFruitAgent collects the measured val-
ues: temperature (abbreviated Temp.), which is registered
in Celsius (C), relative humidity (RH), hydrogen gas (Hyd.),
methane gas (Met.), and luminosity (Lum.). Values of gas
sensors are recorded according to the sensor output value
(V.). At the end of each experiment, the user reports the
“actual” fruit lifespan (this information is subjective since in
current experiments naked-eye observation determines it).

Table 2: Subset of the training set.

Temp RH Hyd Met Lum Lifespan

27.62 70.22 2 184.0 15.0 14

28.02 72.53 8 275.0 10.0 5

27.81 72.75 3.0 258.0 3.0 10

5.3. Test Set

Table 3 shows results for a subset of the test set. This
example, which was performed outside the fridge and in an
open box, shows a good prediction. The system predicted
thirteen days, and the user reported that the banana spoiled
in approximately twelve days.

Table 3: Subset of the test set.

Temp RH Hyd Met Lum
Lifespan

Observed Predicted

28.21 70.24 3.0 183.0 16.0 12 13



5.4. Results and Discussion

We believe that these first experiments are promising, the
prediction module showing good prediction accuracy. Ob-
viously, we need to conduct more experiments with differ-
ent settings to collect more data.

We have conducted some analysis of our prediction mod-
ule. Figure 3 shows the validation curve, which compares
the evolutions of the prediction error for the training set (we
will name it training error, depicted in a blue solid line)
and of the prediction error for the cross validation set (cross
validation error, depicted in a green dashed line) for var-
ious (increasing) values of � (the regularization parameter
used to control overfitness). The figure shows that 0.01 is a
good value for � as cross validation error is minimal. For a
smaller value, there is some variance (overfitness) because
the training error is almost null and the cross validation error
is significant, showing the poor generalization of the model.
For a larger value, the cross validation error is increasing
(note that the training error is also increasing), showing an
increasing bias (underfitness).

Figure 3: Validation curve.

Figure 4 shows the learning curve, i.e., the evolution of
prediction error depending on the size of the training set.
The figure shows that the training error is almost null and
that the cross validation error stays low, confirming that the
model has low bias and low variance. These preliminarily
analyses are encouraging. We are conducting more exper-
iments in order to collect more data in order to further im-
prove the model.

6. Open Challenges
6.1. Learning Algorithms

The preliminary tests that we have conducted show that
the neural network has a good prediction accuracy. But we
need to conduct more experiments in order to construct a

Figure 4: Learning curve.

sufficient and representative data set. We will also continue
to conduct analysis of the behavior of the neural network.
Note that our architecture is generic and we may consider
other types of PredictionAgent, with alternative predic-
tion modules and learning algorithms.

6.2. Genericity

Our architecture is actually generic and may be used for
other purposes. Current implementation served as a proof
of concept of the architecture. But current implementation
provides a unique type of prediction and configuration strat-
egy. It is actually easy to introduce heterogeneity and vari-
ous kinds of quantified things, prediction and configuration
strategies (and associated agents).

Another dimension of genericity is to use the neural net-
work as a controller (and not for prediction). Actually,
we have instantiated a preliminary version of the architec-
ture [2] which since then has been completely redesigned,
and tested it on a scenario of simulated traffic manage-
ment, where controllers control semaphores at the crossing
of roads. The behavior of the semaphores is evolved using
evolutionary algorithms, inspired by evolvable architectures
for robotics. This work has been described in [16].

Last, we are planning to reuse and experiment our ar-
chitecture on other types of applications, such as for in-
stance distributed self monitoring of air pollution in a city
through mobile users (e.g., on bicycles and carrying the sen-
sors/microcontroller device).

6.3. Scalability

Our current implementation is operational but is not scal-
able. Meanwhile, we may relatively easily reconfigurate
and deploy the architecture in a more distributed setting.
For example, PlugAndPlayAgent could be evolved into a
hierarchical architecture mapped for network subdomains.



In addition, QuantifiedFruitAgent could directly run on
the microcontroller1.

6.4. Collaboration

A future obvious direction is in making similar quanti-
fied things collaborative. In the case of bananas or fruits,
various quantified things could exchange and share (and in-
tegrate) various experiences and data in order to extend and
refine the analysis and predictive abilities. We can imagine
scenarios for the fruit farms (plantation and conditioning),
storage and delivery facilities.

Note that, in addition of offering predictions about fruit
lifespan, this system could be adapted to provide other kinds
of predictions, such as the percentage of fruit production
that could be lost under specific transportation conditions.

6.5. From Prediction to Decision

Besides making predictions, this tool could also be ex-
tended to make suggestions and act on its own. For ex-
ample, the device could make suggestions for temperature
changes in real time. If we added a cooler device to current
system, it could autonomously adjust temperature. Note
that, as was explained in § 6.2, a preliminary version of our
architecture has already also be used for control [16].

7. Conclusion
In this paper we have described a multi-agent architec-

ture of quantified fruits for self-predicting maturation of
fruits. It includes 6 types of agents, among them: a self-
controller equipped with various sensors measuring storage
conditions (light, temperature, humidity, etc.) and a self-
prediction module based on a neural network. Our current
implementation uses an Arduino microcontroller board with
5 sensors. We have implemented the architecture and have
conducted various experiments with real settings and real
data (storing bananas in diverse settings: room, refrigerator,
in a box, with other fruits, etc.).

We believe these preliminary results to be promising. We
think that they open the way for more experiments in testing
the architecture in a more distributed and collaborative set-
tings (various fruits and various stages of storing). We hope
this tool may lead to improvements both in transportation
methods by distributors, consumers and retailers, as well as
their storage patterns and practices (refrigeration, packag-
ing, etc.). Last, we believe this prototype architecture could
be adjusted for other types of applications, such as collabo-
rative monitoring of city air pollution (e.g., by citizens rid-
ing bicycles equipped with such architectures).

1Nonetheless, JADE can only be used to implement agents to execute
in Java-compatible systems. Thus, a JADE agent cannot (yet) be directly
deployed on an Arduino board since it currently only provides support for
development of C programs. Therefore, we have created a software layer
to interface JADE with Arduino boards via sockets.
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