
DOI reference number: 10.18293/SEKE2016-183

The Software Architecture Mapping Framework for

Managing Architectural Knowledge

Sébastien Adam, Alain Abran

Department of Software and IT Engineering

École de technologie supérieure

 Montréal, Canada

Abstract—Within a software architecture design (SAD) project,

designers deal with software design artifacts (SDAs) such as

scenarios, patterns, and tactics. Each SDA has its unique issues

and related architectural knowledge (AK) that may threaten the

success of a project. This paper introduces the Software

Architecture Mapping (SAM) framework to manage AK and

associated issues by using finer-grained SDAs and networks of

weighted arguments. These networks of data may be used to

produce quantitative information in multi-dimensional views to

facilitate the identification of critical SDAs and issues in a

project. This paper illustrates how the SAM framework has

been used to manage AK related to the template method (TM)

design pattern in the context of an academic case study.

Keywords: architectural knowledge (AK), architectural

knowledge management (AKM), decision support systems, multi-

dimension analysis, software design artifact (SDA), software

architecture design (SAD), software architecture mapping (SAM),

software structures map (SSM)

I. INTRODUCTION

During development of a software system, development
teams deal with numerous software design artifacts (SDAs)
such as scenarios, design patterns, and procedures. Each SDA
can be characterized using a set of related SDAs and issues
that are factors of influence that may threaten the success of a
project. For instance, a design pattern [1] is an SDA
characterized by a rationale, a solution, plausible
consequences, and trade-offs that need to be considered for
implementation. SDAs and related issues are assets of
architectural knowledge (AK) that embody decisions and
trade-offs applied during the project.

For development teams to be efficient, the SDAs and
related AK must be managed and shared in an efficient
fashion. Indeed, designers must evaluate how the most
influential SDAs impact the capacity of the system to satisfy
stakeholder needs. Insufficient details about these SDAs and
their relationships may lead teams to inappropriate or
suboptimal decisions. Several approaches propose a process
or a technique aimed at managing SDAs [1,2, 3, 5, 7, 8, 10].
These approaches usually focus on a subset of the SDAs
involved in the design process and on a specific development
perspective that is part of the process. However, there is a lack
of studies that support a multi-dimensional view of the AK
database and a methodical treatment of the SDAs and related
AK (i.e., the related SDAs, issues, and arguments that
influence the activities and dimensions of a software
development project).

Designer expertise and experience remains the key
element for identifying the critical factors of a project and their
appropriate solution. This is true at different stages of the
development process (analysis, design, and implementation)
and for different project aspects such as budget, quality, and
schedule. AK should be managed in an integrated and
systematic manner to enable the development of decision
support systems that: 1) offer support to identify, describe, and
analyze relevant SDAs, issues, and arguments; 2) relate SDAs
to their factors of influence; and 3) keep track of the adopted
arguments and resolved issues.

This paper proposes the Software Architecture Mapping
(SAM) framework to manage AK and support multi-
dimensional analysis of the AK database. The proposed AK
model defines the following concepts: SDA, issue, software
structures map (SSM), factor, argument, argumentation, and
view. The SAM framework supports a two-phase approach for
identifying, describing, and analyzing critical factors related
to SDAs for a given project. The first phase is the assets
creation phase, which aims at classifying the SDAs into one
or more SSM and describing the related AK in the form of
issues and interrelated arguments. The second phase is the
assets consumption phase where the AK is used to provide
views that facilitates identification of a project’s critical
factors.

The SAM framework has been applied in industrial
contexts (software cockpit design and Web engineering) and
academic contexts (catalogs of styles, patterns, and tactics,
undergraduate design courses, and Web engineering) to
evaluate its technical feasibility and usability, especially for
novice designers. In addition, a requirements self-assessment
has been conducted using the requirements for AK
management proposed in the literature (e.g., architectural
documentation rules [2]). As an example of SDA, this paper
presents the template method (TM) design pattern [1] and
related factors, which are analyzed and ranked to produce
multi-dimensional views that highlight the critical factors of
the case study. The contributions of this paper include: 1)
reusable definitions of the AK model’s constituents based on
description formats for the SDAs, SSMs, issues, arguments,
and argumentations; 2) a systematic method for executing a
multi-dimensional analysis of the factors; 3) a flexible method
to transform argumentations to multi-dimensional views.

The paper is organized as follows. Section II presents an
overview of the SAM framework. Section III and Section IV
illustrate the two phases of the proposed approach using a case
study realized in the context of an undergraduate course.
Section V presents related works and section VI the
conclusions.

II. OVERVIEW OF THE PROPOSED SOFTWARE

ARCHITECTURE MAPPING (SAM) FRAMEWORK

The SAM framework [11, 12] has been proposed to
support software architecture design (SAD) and architecture
knowledge management (AKM). The framework manages the
AK defined by existing methods, models, and description
templates from the literature on SAD and AKM [1, 2, 3, 7]
(i.e., constraints, requirements, quality attributes, scenarios,
concerns, rationale, styles, tactics, patterns, situational factors,
assumptions, risks, components and connectors, fragments,
viewpoints, views, procedures, metrics, and domain objects).

Figure I presents an overview of the SAM framework. The
blank shapes represent the framework and the four basic
concepts that constitute its reference model (i.e., the software
design artifacts (SDAs), software structures map (SSM),
argument, and view). The colored shapes are concepts of the
Attribute-Driven Design (ADD) method [3].

The SAM framework defines two phases of knowledge
processing: 1) asset creation is performed by a knowledge
engineer, i.e., a software designer tasked with the creation of
assets (i.e., SDAs, SSMs, arguments, and views); 2) asset
consumption is performed by software designers that use the
AK in the reusable assets of their projects. The asset creation
phase elicits the factors that constitute the AK, followed by
the asset consumption phase which analyzes these factors in
order to create multi-dimensional views that enables
identification of important factors of a software project. Each
phase is independent. The results of the creation phase may be
used for multiple executions of the consumption phase. Asset
creation is organized into three steps: 1) identifying SDAs and
related activities; 2) eliciting issues and impacted dimensions;
and 3) describing arguments. The analysis phase is also
divided into three steps: 1) selecting factors and building
generic views for the SDAs under analysis; 2) ranking factors
according to the context of the project and generating
contextual views; and 3) identifying important factors of the
project using the contextual views.

The two starting points in Figure I illustrate two ways to
use the SAM framework. First, the SAM process may be used
to acquire and share knowledge extracted from descriptions of
styles, tactics, design patterns, and design decisions. Then, the
resulting design knowledge base (i.e., SDAs and SSMs) may
be used to support the SAD. At particular decision points in
the design process, such as selection of a pattern, the software
designers may use the SSMs of styles, tactics, patterns, or
decisions as checklists of SDAs to elicit issues, describe
arguments, and create views. For a specific decision point, an
SSM may record the general, contextual, and design
knowledge, and the arguments may record the reasoning, as
proposed in the literature.

Figure I Overview of the SAM framework

Figure II Overview of the SAM process

A. Process and roles of the proposed SAM framework

The proposed SAM process aims at managing the SDAs,
SSMs, issues, and arguments related to a design. Figure II
presents the three activities of the SAM process (i.e., create an
SSM, describe arguments, and analyze arguments) and the
task flow and data flow between the SAM process and the
SAD. The activity “create an SSM” aims at 1) identifying the
finer-grained SDAs related to either a decision point or the
description of a style, pattern, or tactic, and 2) classifying
these SDAs into a matrix of traceability. The activity
“describe arguments” aims at 1) eliciting the issues related to
the SDAs used and 2) reasoning about the arguments related
to the issues. The activity “analyze arguments” aims at
inferring the order of treatment of the arguments and issues
based on the rankings and views of the AK repository created
during the analysis.

B. The proposed architectural knowledge model

The proposed AK model is based on our previous work
[11, 12], case studies, and controlled experiments applying the
SAM framework. The AK model was developed by
addressing the requirements and conclusions in the literature
on methods, models, and tools for SAD and AKM. The model
was designed to meet the following requirements: 1) capture
rationale, constraints, design decisions, and related
explications and quantifications about how they impact
objectives; 2) reduce the possibility of expressing similar
concepts with different terms; 3) take into account all
activities and SDAs from the literature on SDA and AKM; 4)
support personalization for context-specific SAD and AKM;
5) capture the SDAs and issues related to specific decision
points; 6) capture the relationships between SDAs; 7) provide
multiple perspectives for managing the AK repository; 8)
support an integrated approach to SAD and AKM; 9) capture
the AK from textual catalogs; 10) support selection and
comparison of SDAs; and 11) support the evaluation of the
SDAs and the consequences of applying each of them.

Figure III presents the concepts of the AK model for the
SAM framework. AKM aims at sharing AK explicitly in a
manner that supports AK evolution over time along with the
architectures and their implementations. From our point of
view, the SDAs and the arguments about their utilization
constitute the explicit AK that relates to both the SAD and
AKM. Each SDA has some related SDAs and issues. The
SAM framework proposes to use: 1) the software structures
map (SSM) for structuring the SDAs, 2) the argument for
describing the issues and impacts related to the SDAs, 3) the
view for analyzing the impact of arguments on dimensions
and activities of SAD, and 4) the argumentation for structuring
arguments. The SDAs describe the general context and design
knowledge, and the arguments describe the reasoning. The
following sections describe the concepts of the AK model.

Figure III The AK model of the SAM framework

The SAM framework defines a structure of software
design artifacts (SDAs) for AKM. This structure of SDAs is
the basic concept supporting the proposed approach. Many
SDAs and relationships between them are described in the
literature. An SDA may be but is not limited to: a tactic, a
quality attribute scenario, a measure, a design pattern, a style,
or any input or outcome of the SAD [12].

Definition: An SDA is any conceptual artifact that 1)
provides design knowledge about the problem or solution
spaces of a software design, and 2) corresponds to the
identification heuristics of the SAM framework.

An SDA is either elementary or composite. The proposed
definition is that an elementary SDA does not require the
utilization of another SDA in the design solution, while a
composite SDA does require the utilization of another SDA
from the solution space where it is being used. For example, a
tactic is an elementary SDA as proposed in [3], while a design
pattern and a style are composite SDAs [1, 2]. The tactics
described in [3] require no SDA from the solution space. The
TM design pattern requires the utilization of the
polymorphism tactic [1]. An SDA may have one or more
applications, resulting in multiple descriptions of tactics [3],
design patterns [1], and styles [2].

Definition: A software structures map (SSM) is a matrix
of traceability that records a set of SDAs used either at a
particular decision point during the SAD or in the descriptions
of styles, tactics, and patterns.

The SSM is an instantiation of the classification scheme
(CS) of the SAM framework [12]. The CS uses a matrix where
the columns represent the interrogatives (why, when, what,
which, how, and where) and the rows represent the activities
of the SAD. The SDAs of the following activities occupy the
row labels: select the objectives, identify the knowledge, and
define, specify, describe, and evaluate designs. An SSM is
managed as part of the AK. The SAM framework relies on the
knowledge base of SDAs and SSMs for supporting the SAD.
Related work [12] presents the table format used for
representing an SSM. Each interrogative regroups only the
SDAs classified into the corresponding column of the SSM.
The SDA type gives the corresponding line of the SSM.

Definition: An issue describes a problem that occurs by
introducing an SDA into a system being developed. One or
more issues may be elicited for every change to a system.

The SAM framework defines a specific format to describe
the issues. An issue description is composed of an SDA
(subject), a verb, and a complement. The SAM framework
proposes a list of verbs used for describing the issues [11]. The
verbs capture abstractions that provide additional data about
the issues, and express something that alters the meaning of
the issue descriptions. Verbs support change from ad-hoc
issue descriptions to predicate-issue structures. The verbs are
used as a mean to facilitate the elicitation of issues and provide
an issue description format.

Definition: A factor is an essential element for analysing
how an SDA such as a design pattern, a tactic, or a style may
impact a software design.

The SAM framework applies a multi-dimensional analysis
using sets of factors that influence software engineering. A
factor may be an SDA, issue, claim, reasoning, activity, or
dimension. Table I presents the names and the descriptions of
the six proposed factors.

TABLE I. FACTORS THAT CONSTITUTE THE ARGUMENTS

Name Description

SDA Software design artifact being examined

Issue Problem that occurs by using or not using an SDA

Claim Solution that occurs by using an SDA

Reasoning Reasoning description about an issue or a solution

Activity Set of cohesive development tasks
Dimension Perspective on a set of evaluation results

TABLE II. THE PROPOSED ARGUMENTATION DESCRIPTION FORMAT

Argument: issue or claim, reasoning, and scope of the argumentation.

Reasons: arguments that support the claim.

Rebuttals: arguments that establish the falsity of the claim.

Alleviations: arguments that reduce the intensity of the claim.

Definition: An argument is a reasoned attempt to convince
the audience to accept a point of view about an issue or a
claim. An argument is an aggregation of factors, including at
least one or more SDAs, one issue or one claim, and one
reasoning description. The argument’s scope may refer to
impacted dimensions and activities.

A reasoning description describes the relationships
between a set of factors; for example, between two SDAs –
software designer and hook operation. The following
reasoning description refers to two SDAs (software designer
and object-oriented paradigm), an issue, and two dimensions
(quality and people): “Using an object-oriented paradigm
requires skills, expertise, and knowledge. The software
designers do not master the object-oriented paradigm. This
issue may impact the software quality and the software
designers’ commitment.” The argument’s scope refers to
activities and dimensions strengthened (+) or weakened (-) by
the argument. The activities are inferred from the activities
related to the SDAs identified in the argument’s reasoning.
The dimensions are inferred from the dimensions impacted by
the issue that prompted the argument. An argument is related
to a dimension if there is a suspicion that the issue may
produce variation (+ or -) of a dimension evaluation result.

Definition: An argumentation relates a set of arguments
that describe how some SDAs create or resolve issues. Table
II presents the argumentation description format. An argument
provides the argumentation’s claim, reasoning, and scope.
Reasons, rebuttals, and alleviations are connection points.
Reasons are arguments that support the claim. Rebuttals are
counter-arguments for the claim. Alleviations are arguments
that affect the claim.

Definition: A view is a matrix that puts into perspective a
set of ranked arguments. A view analyzes an argument’s
impact on a design. In the SAM framework, the rows are
labeled with activities such as designing, implementing, and
managing, and the columns are labeled with dimensions such
as functions, people, and quality.

The rankings of activities, dimensions, and arguments
generate contextual views that are subjective and quantified.
A views is used to identify critical factors of the project, which
corresponds to the cell of a view that has a higher value. Cells
are prioritized based on their values.

Cells with the highest priority (i.e., with a priority of 1) are
used for reasoning further about factors that relate to the cell
in order to nullify or reduce its value. Then, after these critical
factors are addressed, the ranking are adjusted. The adjusted
rankings provide new priorities. The analysis technique
iterates these steps (i.e., identifying flaws and taking actions
accordingly) until the user is satisfied with the values in the
views (i.e., specific threshold values are attained).

III. ASSET CREATION PHASE

Section III illustrates the AK model’s concepts and the
phases of the SAM framework using the TM design pattern
[1] (see [11] for more details).

A. Eliciting SDAs and related activities

Table III presents some of the SDAs identified from
analysis of various TM descriptions given in the literature.
Each SDA has a description and is classified under a specific
type. We used the classification scheme and SDA types
proposed in [12] as a means to facilitate elicitation of SDAs
and constrain their interpretations.

TABLE III. DISTINGUISHING SDAS OF THE TM PATTERN

Software design artifact (SDA)
Act.

Id Type Description

Ra1 Rationale Define an algorithm, defer steps to subclasses D

Pr1 Property Object-oriented paradigm AD

Pr2 Property Reusability AD

Pr3 Property Extensibility AD

Be1 Behavior Template method calls primitive operations DI

Op1 Operational Define an abstract base class DI

Op4 Operational Define a template method DI

Op5 Operational Define a concrete child class DI

Op8 Operational Declare protected primitives operations DI

St1 Structure Abstract class I

St2 Structure Concrete class I

Ro1 Role Subclass writers M

SF1 Situational Multiple kinds of primitive operations ADIM

Co1 Convention Naming convention IM

It is important to address each SDA during the activities

that produce the most beneficial influences. An activity is a

set of cohesive tasks intended to contribute to the

achievement of a common goal. Table IV classifies each SDA

of the TM pattern based on these criteria. We considered four

important activities: architecting (A), designing (D),

implementing (I), and managing (M) [11].

B. Eliciting issues

We analyzed the TM pattern to identify issues that may
hinder its usage. Table IV lists some issues and the related
SDAs. Due to lack of space, we present only a few of the
numerous issues identified. Each SDA may solve or engender
one or more issues. For example, the extensibility property
(SDA) may not be well defined for a module (issue). Also, to
lighten the responsibility of the subclass writers, the template
method calls the primitive operations (SDA). Uncontrolled
calls to primitive operations (issue) may cause problems. To
address this issue, the pattern declares protected primitive
operations (SDA). Our approach was to use a semi-formal
argument format to describe the issues.

C. Describing arguments and impacted dimensions

One important objective of the asset creation phase is to
describe arguments to use during the consumption phase to
estimate the impact of each issue, which may differ depending
on the context of use of an SDA. Argumentation is concerned
with reasoning in the presence of imperfect knowledge by
eliciting arguments for exploring issues rather than eradicating
them [4]. In our approach, the argumentation was geared
towards quantifying the impact of the factors on project
dimensions and activities. The project dimensions we
considered were adapted from [6] (also see [11]): Functions
(F), Quality (Q), People (P), Budget (B), and Schedule (S).

Table VI presents some of the arguments we elicited to
establish how each issue of the TM pattern impacts project
dimensions (F, Q, P, B, S) and activities (M, A, D, I). For
example, the argument (Arg1) predicts positive impacts on the
functional dimension (F+) by declaring a final method. One
reason is that a final method cannot be overridden. One
rebuttal or reservation is that it is possible to hack the final
mechanism (Arg7). The argument refers to SDAs (e.g., SDA
OP7) that may concern both design (D) and implementation
(I) activities. The prevision was not weighted during the
elicitation step because the elicited arguments were not
project-specific. They can be reused among projects with
other situational factors. The arguments are weighted during
the analysis phase where a specific project is analyzed.

IV. ASSET CONSUMPTION PHASE

During the asset consumption phase, we used the factors
elicited in the creation phase to engender multi-dimensional
views for assessing the impact of factors in different contexts.
It is a three step phase. The planning step selects factors and
builds generic views of networked arguments related to these
factors. The execution step ranks factors according to the
specific context of the project and generates weighted views.
These contextual views are then used to identify critical
factors addressed by designers.

A. Selecting factors and building generic views

The TM pattern was selected as the SDA for analysis. Due
to lack of space four activities (M, A, D, I) and five
dimensions (F, Q, P, B, S) were considered as factors, and
only some of the arguments related to the TM. By selecting
activities and dimensions we obtained a generic multi-
dimensional view of the TM arguments that relate to the
factors under analysis. Table VII presents the view obtained
from the arguments described in Table VI.

B. Ranking arguments, activities, and dimensions

We used absolute ranking (H: high, M: medium, L: low
and X: not relevant) for prioritizing the factors. As a first step,
a work team evaluated how much each activity and dimension
was relevant to the project. The weighting of activities and
dimensions may be different depending on the project’s
context and nature. These rankings were used for filtering the
arguments that were then further analyzed from the multi-
dimensional view of Table VII. In addition, the values of the
rankings were used for multiplying the weights of the
arguments.

TABLE IV. ISSUES RELATED TO THE TM

SDA Issue description

Co1 The naming convention is not well defined

Be1 The template method behavior is subject to change

Op1 The deferred steps are not well known

Op8 The hook operations are not well identified

Pr1 The object-oriented paradigm is not well mastered

Pr2 The reusability objectives are not well defined

Pr3 The extensibility objectives are not well defined

St3 The programming language is not well mastered

TABLE V. ARGUMENTS RELATED TO THE TM

Id Issue or Claim Rea Reb All Dim Act

1
A final method cannot be

overridden by subclasses 7
+

FQ
DI

6
The low cohesion reduces

the analysability of

modules

 9
-

BPQS
ADI

1

1

The low cohesion makes

maintenance more tedious 5, 6
-

BFPQS
ADIM

1

5

The template method is

subject to change
22, 24,

25, 26

-

BQS
DI

2

2

The extensibility

objectives are not well

defined

-

BQS
ADI

2

4

There are too many

primitive methods
-

Q
DI

2

5

The deferred steps are not

well known 22
-

BQS
DI

2

9

The hook operations are

not well identified 22
-

BFQS
DI

The arguments that relate to the most prioritized activities
and dimensions produced more remarkable values in the
contextual (i.e., quantified) view. As a second step, the work
team estimated how much each argument was relevant to the
project. The ranking of the arguments generated the concrete
quantified views. As a result, the arguments were then
contextualized and their weights calculated. Each argument is
potentially the root of an argumentation with reasons,
rebuttals, and alleviations. Therefore, the weight of an
argumentation is the sum of its rank (H, M, or L) and the ranks
of its constituting arguments divided by the number of nodes
in the argumentation.

C. Identifying critical factors

Weighting activities, dimensions, and arguments
generated contextual views that were used to identify critical
factors of the project, which correspond to the cells of views
that have remarkable values. The cells were prioritized based
on their values. A total impact value was computed for each
cell by summing the multiplied weights of the arguments it
contains. These values were translated into priorities (1 is the
highest priority). Our approach suggested reasoning further
about the factors that relate to the most prioritized cell in order
to nullify or reduce its value. We made the assumption that
taking actions to address these most influent factors produces
the greatest benefit.

After the critical factors were addressed, their ranking was
adjusted. The adjusted rankings provided new priorities. The
user iterates these steps (i.e., identifying flaws and taking
actions) until satisfied with the values in the concrete views
(i.e., specific threshold values attained).

One of the experiments where the SAM framework was
applied was an undergraduate course of object-oriented
software design at ETS [11]. The project analyzed in this
experiment focused on the design and implementation of a
software framework that provided the skeleton of a dice game
(DGSF). Table VI presents a contextualization of the factors.
Table VII presents a view for the DGSF. In addition, a tool-
support was used for managing the SDAs, SSMs, and
arguments of the case study. The SDAs manager was
developed using the Java programming language and Eclipse
development platform. The SSMs and arguments manager
was developed using a Java-based compiler and a grammar.

V. RELATED WORK

Many organizations maintain SDAs and AK in a database
to assist document control, development, and maintenance
activities. Much AK and support for designers provided in the
literature includes design decision, design rationale, pattern,
tactic and quality model [1, 2, 3, 4, 7, 8, 9, 10]). However,
most of these models, methods, and tools provide limited
views into the AK database [3, 7, 8]. Many approaches have
been proposed to support the design process [2, 3, 7], but few
[8] support designers to manage and keep track of the AK. We
believe our approach can be used to describe SDAs in a
manner that may facilitate selecting relevant AK to keep track
of selected SDAs as quantified design decisions. The SAM
framework can be used to analyze the AK using structured
views that relates in a finer-grained manner the artifacts of the
problem space to those of the solution space, from
organizational goals to specific system artifacts. We believe a
multi-dimensional view is a valuable artifact for providing an
integrated view of architectural knowledge.

VI. CONCLUSIONS

This paper presented a SAM framework that supports AK
management and a multi-dimensional analysis approach to
analyzing SDAs such as design patterns and related AK. The
proposed AK model describes AK using a set of factors of
influence such as SDAs, issues, arguments, activities, and
dimensions. Relating these factors enabled the creation of
multi-dimensional views that support designers in identifying
and addressing critical factors to their projects. The approach
was used in industrial and academic contexts. As a proof of
concept a prototype tool was developed that students used for
analysis. The case studies and controlled experiments
produced evidence that the multi-dimensional analysis
approach supported by the SAM framework is a valuable step
towards handling SDAs and the related AK as an integrated
set of factors of influence. The proposed approach may be
customized to better support particular SAD processes and
system needs. In the near future, it will be supported by an
AK management tool. One goal of this work was to contribute
to building an AK model of factors linked formally and
exploited by algorithms. Finally, five case studies and three
controlled experiments have been conducted and will be
presented in a forthcoming paper.

TABLE VI. RANKING FACTORS FOR THE DGSF

Ranking of activities

for analysis

 Ranking of arguments for each iteration

 Arg. Iter1 Iter2 Iter3

Architecting M 1 L L L

Designing H 2 H H H

Implementing M 6 M L X

Managing L 7 L X X

Ranking of aspects for
analysis

 9 H H H

 11 X X X

Budget X 15 L L L

Functions M 22 H L X

People M 24 X X X

Quality H 25 H X X

Schedule M 29 X X X

TABLE VII. CONCRETE VIEWS OF DGSF ARGUMENTS

Activity Aspect

Iteration 1 F P Q S

A 10 11 3 8

D 6 5 1 2

I 13 12 4 7

M 16 15 9 14

Iteration 2

A 7 6 1 5

D 14 13 16 12

I 11 10 15 9

M 8 4 2 3

REFERENCES

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns:
Elements of Reusable Object-Oriented Software”, A.-W., B. (1995).

[2] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Nord, R., Stafford, J., “Documenting Software Architectures – Views
and Beyond”, Addison Wesley, Boston (2003).

[3] Bass, L., Clements, P., Kazman, R., “Software Architecture in
Practice”, Addison Wesley, Boston (2003).

[4] Standard, I.: ISO/IEC 42010 Systems and Software Engineering –
Recommended Practice for Architectural Description of Software-
Intensive Systems. ISO/IEC 42010, (2011).

[5] Carlos, C, Jarred, M, Sanjay, M, Iyad, R, Chris, R, Guillermo, S,
Matthew, S, Gerard, V, Steven, W, “Towards an argument interchange
format”, Knowl. Eng. Rev. 21, 4 (Dec. 2006), 293-316.

[6] Wiegers, K.E., “Standing on Principle,” Journal of the Quality
Assurance Institute, vol. 11, no. 3 (July 1997).

[7] Kim, S., Kim, D.K., Lu, L., Park, S., “Quality‐ driven Architecture
Development Using Architectural Tactics”, Journal of Systems and
Software 82, 1211‐ 1231 (2009).

[8] Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.,
“Knowledge Based Quality-driven Architecture Design and
Evaluation”, Journal of Info. and Soft. Tech. 52, 577-601 (2010).

[9] Shahin, M., Liang, P., Khayyambashi, M.R., “Architectural Design
Decision: Existing Models and Tools”, In: WICSA/ECSA 2009, pp.
293-296. IEEE, Cambridge (2009).

[10] Parizi, R.M., Ghani, A., “Architectural Knowledge Sharing (AKS)
Approaches: a Survey Research”, Journal of Theoretical and Applied
Information Technology, 1224--1235 (2008).

[11] Adam, S., El-Boussaidi, G., "A multi-dimensional approach for
analyzing software artifacts", 25th SEKE, June 27-29, Boston (2013).

[12] Adam, S., El-Boussaidi, G., Abran, A., "An approach for classifying
design artifacts", 27th SEKE, June 6-8, Pittsburgh (2015).

