
An Average Case Time Complexity Estimator for Black-box Functions

Duncan Yung, Bill Laboon, Shikuo Chang

Department of Computer Science, University of Pittsburgh
duncanyung@cs.pitt.edu,bill.laboon@pitt.edu,chang@cs.pitt.edu

Abstract— Average case time complexity is widely used to
evaluate the efficiency of an algorithm [2]. Given a black-
box function, if a tester wants to know the average case time
complexity, he/she has to analyze the source code and make
input assumption so as to know the average case of the function.
Although that is feasible, it is time consuming and that makes the
testing process no longer automatic. In this paper, we propose
an approach for estimating the average case time complexity
of a given black-box function without analyzing source codes.
Experimental results show that our approach can accurately
estimate the average case time complexity without reading the
source code.

I. INTRODUCTION

The worst case time complexity is always used to evaluate
the efficiency of an algorithm. The worst case time complexity
of an algorithm is based on an extreme input which maximize
the execution time of the algorithm. However, such extreme
input may not always appear. Hence, average case time
complexity can be a better representation of efficiency of an
algorithm [2].

Given a black-box function, if a tester wants to know
the average case time complexity, he/she has to analyze the
source code and make input assumption so as to know the
average case of the function. Although that is feasible, it is
time consuming and that makes the testing process no longer
automatic. Furthermore, manual source code analysis is not
always reliable as it is not rare that human error occurs (That
is one of the reason to have software testing.).

In this paper, we propose an approach for estimating the
average case time complexity of a given black-box function
without analyzing source codes. It is a useful tool for testers
and programmers to analyze their source codes. The challenges
of building such tools lie in two-fold:

1) Without reading the source code, we cannot get any hint
from the implementation. The only easy thing that we
can do is to measure execution time of the black-box
function.

2) It is too time consuming to measure the execution
time of all possible inputs so as to obtain the average
execution time of the function and estimate the average
case time complexity.

Related work study is in Section II. In Section III-A,
we propose the baseline approach. Based on the baseline
approach, we develop an advanced approach in Section III-C.

The accuracy and efficiency of different approaches are
evaluated in Section IV.

II. RELATED WORK

The related work of time complexity analysis mainly
fall into two areas-static time complexity analysis and
measurement-based time complexity analysis. However, they
all focus on worst-case time complexity. In this paper, we
focus on average case time complexity.

A. Static Time Complexity Analysis

Static time complexity analysis approaches[9], [7] derive
bounds for the execution time of a program without actually
executing the program. Usually, the program is not treated as
a black-box function and analysis of source codes is needed.
In this paper, we propose a approach that can estimate the
time complexity of black-box functions.

B. Measurement-based Time Complexity Analysis

Measurement-based approaches measures execution time
of programs. As the number of possible inputs increase with
the complexity of the program, exhaustive measurements
becomes impossible. There exists solutions (e.g. [6] and [8])
that partition a program into parts for measuring execution
time of worst case. These approaches try to bring the system
into a worst-case state before taking measurements, e.g. by
clearing the cache. However, this assumption may not hold
for complex processor architectures that can exhibit timing
anomalies. Kirner et al [8] proposed to generate inputs so
that all paths of the program are taken. However, Kirner
et al’s approach is not a purely measurement-based time
complexity analysis approach. Bernat et al [4], [3] proposed
to determine the probability distribution of execution time.
Their approach does not derive a bound for the execution time.

III. METHODOLOGY

In this paper, we propose to use execution time of the
black-box function (Section III-A.1) and regression to
estimate the average case time complexity (Section III-A.2)
of a black-box function.

1

duncan
Typewritten Text
(DOI reference number: 10.18293/SEKE2015-213)

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

duncan
Typewritten Text

A. Baseline Approach

In this paper, we assume that the average case time
complexity of a function is analyzed based on the uniform
input assumption (Definition 1). That is the probability of
the appearance of an input is always uniformly distributed
over all possible inputs. For example, if the input is a size
3 integer array and only 1, 2, and 3 (domain size=3) are
valid values for each element of the array, the probabilities
that {1,1,1},{1,1,2},{1,1,3},...,{3,3,3} (there are 27 possible
inputs) will be the input are the same and sum of the
probabilities is 1.

Definition 1: [Uniform Input] Let x be an input. x
satisfies: ∀x ∈ {0, 1}∗, prob(input = x) = 1

|{0,1}∗| , where
{0, 1}∗ is all possible bit patterns and |{0,1}∗| is the size of
the set {0, 1}∗.

1) Data Collection Phase: Based on the uniform input
assumption, we estimate the average execution time of an
input size by measuring the average execution time of all
possible inputs. Theoretically, we can generate all possible
inputs and estimate the average execution time for n=1,...,∞.
By doing that, we can obtain data point of the average
execution time of all input sizes.

2) Prediction Phase: Non-linear regression can be used to
fit different curves to the data points. The best fit curve is the
one with the least means square error. We adopt the best fit
curve to be the average case time complexity of the function.
For example, we use non-linear regression to fit the data points
to functions a+ bn, a+ blog2n, a+ bnlog2n, a+ bn2, a+ bn3,
and a + bn4, where n is the input size, and a and b are
coefficients. For each function, we can obtain the mean
square error. The function with the least mean square error is
chosen to be the average case time complexity estimation of
the black-box function.

B. Bottleneck in Data Collection Phase

The number of all possible inputs increases exponentially
with with input size. For example, the number of all possible
inputs of a size 10 integer array is 1010, given that the
value of each element of the array can only be 1,2,...,10.
Therefore, it is impossible to measure the execution time
when input size is large. Although it is still possible to
measure execution time of a function when input size is small
(e.g. 5), the estimation of the average case time complexity
is not accurate. (Figure 1, 2, and 3, Sol3).

C. Sampling Approach with Majority Voting

In this paper, we propose to use uniform sampling of input
to represent all possible inputs so as to improve efficiency of
the model and majority voting technique to reduce variance
of the estimation result.

1) Efficient Sampling: For each input size n, we draw
samples uniformly from all possible inputs. The samples
can be used as an estimation of all possible inputs as the
probability of each input being drawn is the same.

2) Majority Vote: For each run, we run the model for k
times, where k is a user-defined parameter. Then, we pick the
majority prediction result as the result of that run. Suppose k
is 10. There 6 times the prediction result is a+ bnlog2n and
4 times the prediction result is a+ bn2. Then, the prediction
result of that run is a+ bnlog2n.

In this setting, the majority voting is the same as bagging
in machine learning field. It is well-known that bagging can
successfully improve stability of models [5].

IV. EXPERIMENT

In this section, we evaluate the accuracy and efficiency
of seven different approaches using 14 algorithms (black-
box functions) which have integer array as inputs. We
assume that the domain size of each integer is 1 to
maximum integer in Java. Algorithm 1 to 10 are well-
known algorithms. The definitions of algorithm 11 to
14 can be found in [1]. Experiments are implemented
in Java and run in an Intel Core i5 2.5GHz laptop with
4G memory. All source codes can be found in https :
//github.com/duncanyung/cs1699Fall14 deliverable4.git.
We compare accuracies and execution time of different
approaches.

A. Comparison of Different Approaches

The settings of each approach are as below:

1) Sampling Approach with Majority Voting (Sol1)
• input size n=1,2,5,10,50,100
• sample size for each n=5000 (sample size for algo-

rithm 5 is 1000)
• majority voting of 50 predictions
• 50 runs

2) Sampling Approach without Majority Voting (Sola2)
• input size n=1,2,5,10,50,100
• sample size for each n=5000
• 50 runs

3) Sampling Approach without Majority Voting (Solb2)
• input size n=1,2,5,10,50,100
• sample size for each n=20000
• 50 runs

4) Sampling Approach without Majority Voting (Solc2)
• input size n=1,2,5,10,50,100
• sample size for each n=80000

2

 0

 20

 40

 60

 80

 100

1.M
erge Sort

2.Q
uick Sort

3.Bubble Sort

4.Single for-loop

5.n 3
 function

A
c
c
u
ra

c
y
 %

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

 0.01

 0.1

 1

 10

 100

 1000

 10000

1.M
erge Sort

2.Q
uick Sort

3.Bubble Sort

4.Single for-loop

5.n 3
 function

T
im

e
 (

S
e
c
o
n
d
s
)

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

Fig. 1. Algorithm 1 - 5

• 50 runs

5) Baseline Approach with Majority Voting (Sola3)
• input size n=1,2,3,4,5,6,7
• majority voting of 50 predictions
• 50 runs

6) Baseline Approach without Majority Voting (Solb3)
• input size n=1,2,3,4,5,6,7,10
• majority voting of 50 predictions
• 50 runs

7) Baseline Approach with Majority Voting (Solc3)
• input size n=1,2,3,4,5,6,7,10
• majority voting of 50 predictions
• 50 runs

For each approach, the model tries to classify the average
case time complexity of the black-box function as one of
these time complexities- O(n), O(log2n), O(nlog2n), O(n2),
O(n3), O(n4), and O(n5).

 0

 20

 40

 60

 80

 100

6.Lienar Search

7.Binary Serach

8.Arrays.toString

9.Arrays.C
opyO

f

10.R
em

ove D
uplicates

A
c
c
u
ra

c
y
 %

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

 0.01

 0.1

 1

 10

 100

6.Lienar Search

7.Binary Serach

8.Arrays.toString

9.Arrays.C
opyO

f

10.R
em

ove D
uplicates

T
im

e
 (

S
e
c
o
n
d
s
)

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

Fig. 2. Algorithm 6 - 10

Figure 1, 2, and 3 shows the experiment results of all
solutions for algorithm 1-5, 6-10, and 11-14 respectively.

The accuracy of Sol1 is higher than Sola2 . Hence, we can
see that the majority voting technique can actually improve
the accuracy. The accuracy of Sola3 is the worst. Hence, we
can see that using a small input size (from 1 to 7) cannot help
to estimate the complexity. However, increasing input size
will make the execution time increase exponentially which is
not a feasible solution. Although the execution time of Sol1
is the highest, the execution time of Sola1 is less than 200
seconds (except algorithm 5).

Solb2 and Solc2 tries to improve the accuracy by increasing
the sample size for each input size to 20000 and 80000
respectively. In general, the accuracy of Solb2 is better than
Sola2 , but with higher execution time. Although the accuracy
of Solb2 is better than Sola2 , it is still worse than Sol1.
Then, we further increase the sample size for each input size
from 20000 to 80000. Hopefully, the accuracies would be
improved. Unfortunately, the accuracy gets worse. Hence, we
believe that using large sample size without majority vote
cannot help improving accuracy.

3

 0

 20

 40

 60

 80

 100

11.Search In R
oatated

 Sorted Array

12.3Sum

13.Plus O
ne

14.C
andy

A
c
c
u
ra

c
y
 %

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

 0.01

 0.1

 1

 10

 100

11.Search In R
oatated

 Sorted Array

12.3Sum

13.Plus O
ne

14.C
andy

T
im

e
 (

S
e
c
o
n
d
s
)

sol1
sol2

a

sol2
b

sol2
c

sol3
a

sol3
b

sol3
c

Fig. 3. Algorithm 11 - 14

Solb3 tries to improve the accuracy by changing the input
size to [1,2,3,4,5,6,7,10] while not using majority vote. Solc3
tries to improve the accuracy by changing the input size to
[1,2,3,4,5,6,7,10] while using majority vote. The accuracy
of Solb3 and Solc3 are similar to Sola3 . However, there is a
non-linear increase in average execution time. This shows
that slightly increasing the input size (from [1,2,3,4,5,6,7] to
[1,2,3,4,5,6,7,10]) cannot help improving accuracy. However,
largely increasing the input size (e.g. using [1,2,5,10,50])
would result in an unacceptably high execution time.

V. DISCUSSION

A. Execution Time Issue

The execution time of high complexity algorithms increase
non-linearly (e.g. algorithm 5). Under such situation, the
model may have to automatically reduce the input and sample
size so as to have a quick response. Therefore, the model can
estimate the execution time of the algorithm before deciding
the input and sample size.

B. Input-Execution Time Relationship

In this paper, we assume that the execution time is related
to the input size. However, that is not always true for an
arbitrary black-box function. We need another approach
for estimating the average case time complexity of those
black-box functions. One of the direction to solve this issue
is that the system can draw uniform input size sample
instead of setting the input size to a specific sequence (e.g.
n=1,2,5,10,50,100).

C. Input Type

In the experiment section, we assume that the input is an
array of integer. However, the input of a black-box function
can be any type. Therefore, generating uniform input for
black-box functions with integer array as input is different
from generating uniform input for black-box functions with
other input types. Given a uniform input generator is the pre-
condition of using our avergae case time complexity estimator.

VI. CONCLUSION

In this paper, we propose an approach to estimate the
average case time complexity of a black-box function. We
propose to use sampling to improve the efficiency and
majority voting to improve the stability of the approach.
Experimental result shows our proposed approach (Sol1)
can estimate the average case time complexity of different
black-box functions accurately and efficiently.

REFERENCES

[1] www.leetCode.com.
[2] S. Ben-david, B. Chor, O. Goldreich, and M. Luby. On the theory of

average case complexity. Journal of Computer and System Sciences,
44:193–219, 1997.

[3] G. Bernat, A. Colin, and S. Petters. pwcet: A tool for probabilistic worst-
case execution time analysis of real-time systems. Technical report, 2003.

[4] G. Bernat, A. Colin, and S. M. Petters. Wcet analysis of probabilistic
hard real-time system. In RTSS, pages 279–288. IEEE Computer Society,
2002.

[5] L. Breiman. Bagging Predictors. Mach. Learn., 24(2):123–140, Aug.
1996.

[6] J.-F. Deverge and I. Puaut. Safe measurement-based WCET estimation. In
R. Wilhelm, editor, 5th International Workshop on Worst-Case Execution
Time Analysis (WCET’05), volume 1 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2007. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[7] S. Gulwani. Speed: Symbolic complexity bound analysis. In A. Bouajjani
and O. Maler, editors, CAV, volume 5643 of Lecture Notes in Computer
Science, pages 51–62. Springer, 2009.

[8] R. Kirner, P. Puschner, and I. Wenzel. Measurement-based worst-case
execution time analysis using automatic test-data generation. In IN PROC.
IEEE WORKSHOP ON SOFTWARE TECH. FOR FUTURE EMBEDDED
AND UBIQUITOUS SYSTS. (SEUS05, pages 7–10, 2004.

[9] R. Wilhelm. Determining bounds on execution times.

4

