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    Abstract— With the increasing complexity of software, new 
access control methods have emerged to deal with attribute-
based authorization. As a standard language for attribute-based 
access control policies, XACML offers a number of rule and 
policy combining algorithms to meet different needs of policy 
composition. Due to their variety and complexity, however, it is 
not uncommon to apply combining algorithms incorrectly, which 
can lead to unauthorized access or denial of service. To solve this 
problem, this paper presents a fault-based testing approach for 
determining incorrect combining algorithms in XACML 3.0 
policies. It exploits an efficient constraint solver to generate 
queries to which a given policy produces different responses than 
its combining algorithm-based mutants. Such queries can 
determine whether or not the given combining algorithm is used 
correctly. Our empirical studies using sizable XACML policies 
have demonstrated that our approach is effective.   

Keywords— Combining algorithm, constraint solving, fault-
based testing, test generation, XACML. 

I. INTRODUCTION 

In security-intensive software, access control is a 
fundamental mechanism for preventing malicious or accidental 
violation of security requirements by regulating user access to 
resources. An access control policy defines the conditions 
under which access to resources can be granted and to whom. 
Given an access request, it yields an access decision such as 
permit or deny. With the increasing complexity of software, 
access control methods have evolved from popular role-based 
access control to Attribute-Based Access Control (ABAC). 
ABAC enables fine-grained access control by combining 
various attributes of authorization elements into access control 
decisions. These attributes are predefined characteristics of 
subjects (e.g., job title and age), resources (e.g., data, programs, 
and networks), actions, and environments (e.g., current time 
and IP address) [7]. ABAC also facilitates collaborative policy 
administration within a large enterprise or across multiple 
organizations. In a large enterprise, for example, elements of 
authorization policies may be managed by different 
departments, such as the Information Technology department, 
Human Resources, the Legal department, and the Finance 
department [13]. Individual rules or policies are composed into 
a whole in order to make consistent access decisions. 

XACML (eXtensible Access Control Markup Language) 
[13] is an OASIS standard for specifying ABAC policies in the 

XML format. To support flexible policy composition, XACML 
3.0 provides 11 rule combining algorithms and 12 policy 
combining algorithms. A combining algorithm aims at 
rendering a single access decision by combining the decisions 
of individual access control rules or policies. Due to the variety 
of combining algorithms and subtle similarities between the 
combining algorithms, it is not uncommon to use them 
incorrectly when XACML3.0 policies are authored. A user 
may inadvertently select an incorrect combining algorithm or 
intentionally apply an incorrect combining algorithm due to 
misunderstanding. Furthermore, for certain rules (or policies), 
different combining algorithms can be functionally equivalent 
and result in the same response to every access request. In an 
evolving process of policy development and maintenance, 
however, a previously working combining algorithm may 
become incorrect after new rules or policies are added in a way 
that implicitly breaks the constraints on functional equivalence. 
Needless to say, incorrect combining algorithms in XACML 
policies can lead to devastating consequences, such as 
unauthorized access and denial of service. 

This paper presents a fault-based testing approach for 
determining existence or absence of incorrect combining 
algorithms in XACML 3.0 policies. Given an XACML policy 
(or policy set), our approach analyzes whether the given 
combining algorithm is functionally equivalent to each of the 
candidate combining algorithms with respect to the rules in the 
given policy (or policies in the given policy set). If they can be 
different, our approach exploits a constraint solver to generate 
a query to which the two combining algorithms result in 
different responses. The combining algorithm is correct only if 
it produces correct responses to such queries. In theory, the 
query generation involves an NP-hard problem because the 
targets and conditions in XACML rules, policies and policy 
sets can be complex first-order logic formulas with user-
defined functions. In practice, our case studies have 
demonstrated that the implementation of our approach based 
on an efficient constraint solver Z3-str [6][15] is both feasible 
and effective for dealing with sizable XACML policies.  

The remainder of this paper is organized as follows. 
Section II gives a brief introduction to XACML policies and 
combining algorithms. Section III describes the fault-based 
testing approach. Section IV elaborates on fault-based test 
generation. Section V presents the empirical studies. Section 
VI reviews related work. Section VII concludes this paper.  
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II. XACML POLICIES AND COMBINING ALGORITHMS  

 The main components of the XACML3.0 model are rule, 
policy, and policy set. A rule consists of a target, a condition, 
and an effect. The target is a logical expression that specifies 
the set of requests to which the rule is intended to apply. The 
condition is a Boolean expression that refines the applicability 
of the rule established by the target. Predicates in target and 
condition are defined over attributes and attribute values (e.g., 
age>=18). A policy comprises a policy target, a rule-combining 
algorithm identifier, and a list of rules. A policy set consists of 
a policy set target, a policy-combining algorithm identifier, and 
a list of policies or policy sets. Figure 1 shows the relationships 
between the main elements of XACML3.0. For simplicity, this 
paper focuses on policies and rule combining algorithms. 

 

Figure 1. Main language elements of XACML 3.0 

 Formally, a policy P= <PT, CA, R> consists of a policy 
target PT, a rule combining algorithm CA, and a list of rules R1. 
Each rule ri∈R is a triple <rti, rci, rei>, where rti is the rule’s 
target, rci is the rule’s condition, and rei is the rule’s effect 
(either Deny or Permit). ri is called a permit rule if rei=Permit; 
ri is called a deny rule if rei=Deny; rti and rci are optional. A 
rule without target and condition, denoted by <_, _, rei> is 
called a default rule.  

 An access request (also called query) consists of a list of 
attribute assignments: {x1=V1, x2=V2,…}, where xi is an 
attribute name and Vi is a value assigned to xi. The decision of 
rule r=<rt, rc, re> with respect to request q, denoted by d(r, 
q), is defined as follows: 

 Permit: access is granted when rule effect re = Permit, 
query q matches policy target PT and rule target rt, and 
rule condition rc is true with respect to q. 

 Deny: access is denied when re = Deny, q matches PT 
and rt, and rc is true with respect to q. 

 N/A: q is not applicable – q does not match rt or rc 
evaluate to false with respect to q.  

 I(D): An error occurred when rt or rc was evaluated and 
re=Deny. The decision could have evaluated to Deny if 
no error had occurred.  

                                                           
1 In XACML, a policy also has other components, such as obligations 

and advice. We do not consider these components due to their 
irrelevance to the research in this paper.   

 I(P): An error occurred when rt or rc was evaluated and 
re=Permit. The decision could have evaluated to 
Permit if no error had occurred. 

      For convenience, we use N/A, I(D), I(P), and I(DP) to 
denote the following decisions respectively: NotApplicable, 
Indeterminate {D}, Indeterminate {P}, and Indeterminate 
{DP}. So d(r, q)  {Permit, N/A, I(P)} if r is a permit rule, and 
d(r, q) {Deny, N/A, I(D)} if r is a deny rule. For a default rule 
r = <_, _, re>, d(r, q) = re for any q.  

      Given query q, rules r1, r2…, rn in policy P=<PT, CA, R> 
may yield different decisions. The rule combining algorithm 
CA combines the decisions of individual rules into a single 
policy-level decision, denoted as d(P, q). In XACML 3.0, there 
are 11 rule combining algorithms. Four are for compatibility 
support of old versions - Legacy Ordered-deny-overrides, 
Legacy Permit-overrides, Legacy Ordered-permit-overrides, 
and Legacy Ordered-permit-overrides. In Balana [1] (an open 
source implementation of XACML3.0 based on which our 
approach is developed), the implementations of Ordered-deny-
overrides and Ordered-permit-overrides are the same as Deny-
overrides and Permit-overrides. Thus, this paper focuses on 
five rule combining algorithms: Deny-overrides, Deny-unless-
permit, Permit-overrides, Permit-unless-deny, and First-
applicable. Their meanings are as follows: 

 Deny-overrides: Intended for those cases where a deny 
decision should have priority over a permit decision; 

 Permit-overrides: Intended for the cases where a permit 
decision should have priority over a deny decision. 

 Deny-unless-permit: Intended for those cases where a 
permit decision should have priority over a deny 
decision, and an “Indeterminate” or “NotApplicable” 
must never be the result. 

 Permit-unless-deny: Intended for those cases where a 
deny decision should have priority over a permit 
decision, and an “Indeterminate” or “NotApplicable” 
must never be the result. 

 First-applicable: Rules are evaluated in the order in 
which they are listed. If a rule’s target matches and 
condition evaluates to "True", then return the rule’s 
effect (Permit or Deny). If the target or condition 
evaluates to "False", the next rule is evaluated. If no 
further rule exists, then return "NotApplicable". If an 
error occurs, then return "Indeterminate", with the 
appropriate error status. 

 Given policy P=<PT, CA, R>, the set of possible policy 
decisions depends on CA. For example, Deny-overrides, 
Permit-overrides, and First-applicable may yield one of the 
following six decisions: {Permit, Deny, N/A, I(D), I(P), 
I(DP)}, where I(DP) refers to Indeterminate{DP}. I(DP)  
results from one of the following situations: (a) an error 
occurred when policy target PT was evaluated and the decision 
could have evaluated to Deny or Permit if no error had 
occurred; (b) there is a permit rule that evaluates to I(P) and a 
deny rule that evaluates to I(D) or Deny when CA=Permit-
overrides; (c) there is a deny rule that evaluates to I(D) and a 
permit rule that evaluates to I(P) or Permit when CA=Deny-
overrides. Deny-unless-permit and Permit-unless-deny result in 
either Permit or Deny.  



III. FAULT-BASED TESTING OF COMBINING ALGORITHMS 

     Fault-based testing aims to determine the existence or 
absence of a hypothesized fault [12]. It has been widely used to 
generate test cases or evaluate the quality of given tests. This 
paper focuses on fault-based test generation for incorrect 
combining algorithm in policy P = <PT, CA, R>. The basic 
idea is as follows: assuming CA is faulty and CA' is the correct 
combining algorithm, the fault-based approach generates a 
query q such that d(P, q) ≠ d(P', q), where P' = <PT, CA', R>, 
called P’s mutant. P' has the same policy target and rules as P. 
According to the correct response to q (called oracle value, 
denoted as o(q)), we can determine whether CA or CA' is 
faulty. Note that, when testing P, we do not know which 
combining algorithm is the right one. However, it must be in 
the given set of rule combining algorithms (denoted as RCA). 
RCA does not have to contain all the combining algorithms in 
XACML. It can be a subset, depending on the application. For 
instance, a meaningful set of combining algorithms to be 
considered for a particular application might be {Permit-
overrides, Permit-unless-deny, First-applicable}, rather than 
all the 11 rule combining algorithms in XACML 3.0. As such, 
our approach considers each possible mutant P' = <PT, CA', 
R> where CA' ∈ RCA and CA'≠CA and aims to generate a 
query to show the difference between P and each P'.  

Although CA and CA' are meant to be different, P and P' can 
be functionally equivalent for certain PT and R, i.e., d(P, 
q)=d(P', q) for any query q. For example, if R has only permit 
rules, Deny-overrides and Permit-overrides would make no 
difference. Let query (P, P') denote the function that returns 
null if P and P' are functionally equivalent, otherwise returns a 
query q such that d(P, q) ≠ d(P', q). Let Q = {q: q= query (P, 
P’)  q ≠ null for each mutant P' =<PT, CA', R>, CA' ∈ RCA 
and CA'≠CA}. CA in P is correct if and only if d(P, q)=o(q) for 
any q∈ Q. In other words, CA is incorrect if there exists q∈Q 
such that d(P, q) ≠ o(q). Here, determining whether the given 
combining algorithm is correct or not requires user to define 
o(q) according to the access control requirements. In our 
approach, the maximum number of queries for which user 
needs to define oracle values is |RCA| -1. This is much more 
effective than reviewing all the rules in the policy or testing the 
policy with many queries. As reviewed in Section VI, the 
existing testing methods for XACML policies do not target the 
detection of incorrect combining algorithms. They all generate 
a large number of queries to which user has to define the oracle 
value of each query.   

The fault-based testing of XACML combining algorithms 
in our approach involves two issues:  (1) determine when P and 
P' are functionally equivalent with respect to the given policy 
target and rules; and (2) when P and P' are not functionally 
equivalent, find a query q such that d(P, q) ≠ d(P', q). To 
address the first issue, our technical report [14] has formalized 
the semantic differences between the five rule combining 
algorithms and between the six policy combining algorithms 
with 49 theorems. These theorems describe the necessary and 
sufficient conditions under which different combining 
algorithms are functionally equivalent. Based on [14], this 
paper focuses on the second issue by exploiting a constraint 
solver for automated test generation. For example, the 
following two theorems capture the semantic difference 

between rule combining algorithms Deny-overrides and 
Permit-overrides. Detailed proofs can be found in [14]. 

Theorem 1. Given policy P = <PT, Deny-overrides, R> and 
P'= <PT, Permit-overrides, R>. If ri (1 i n) are all permit 
rules or ri (1 i n) are all deny rules, then P and P' are 
functionally equivalent. 

Theorem 2. Given policy P=<PT, Deny-overrides, R> and 
P'=<PT, Permit-overrides, R>, where R has at least one permit 
rule and at least one deny rule. For any q, d(P, q) ≠ d(P', q) if 
and only if there exists permit rule ri=<rti, rci, Permit> R, 
deny rule rj =<rtj, rcj, Deny>  R , and query q, such that:  
      (a) d(ri, q) = Permit  d(rj, q) ∈{Deny, I(D)} or 

(b) d(ri, q) = I(P)  d(rj, q) = Deny. 

 The above theorems lay the foundation for generating 
query q such that d(P, q) ≠ d(P', q). The corresponding test 
generation algorithm is described in the next section. 

IV. FAULT-BASED TEST GENERATION 

This section discusses how to design and implement query 
(P, P') using constraint solver Z3-str. Z3 [6] is an efficient 
SMT (Satisfiability Modulo Theories) Solver from Microsoft 
Research. SMT generalizes Boolean Satisfiability (SAT) by 
adding equality reasoning, arithmetic, fixed-size bit-vectors, 
arrays, quantifiers, and other useful first-order theories. Z3 
supports basic data types (e.g., Int and Bool) as well as data 
structures (e.g., Array, List, BitVec, and Records). However, 
Z3 does not directly deal with strings. To address this issue, 
Z3-str [15] extends Z3 by treating strings as a primitive type 
and supporting common string operations.  

 In the following, we first introduce the basic functions that 
generate queries for a pair of rules and then describes how they 
are used in the query generation algorithms for comparing 
combining algorithms. These basic functions represent the 
queries used in the detailed proofs of the theorems [14]. We 
also discuss how to implement the basic query generation 
functions by transforming the corresponding targets and 
conditions of an XACML policy into the input of Z3-str.  

A. Query Generation Functions 

Suppose r1 =<rt1, rc1, re1> and r2 =<rt2, rc2, re2> are two 
rules. E, N, and I stand for Effect (Permit or Deny), N/A, and 
Indeterminate, respectively. For simplicity, here we do not 
consider targets of policies or policy sets, which are handled 
similarly. The basic query generation functions are as follows: 

 queryE_E(r1, r2): generate a query q to make both r1 
and r2  produce the specified effects re1 and re2, 
respectively (i.e., d(r1, q) = re1 and d(r2, q) = re2). In 
this case, the rule targets and conditions are all satisfied, 
i.e., rt1  rc1  rt2  rc2.  

 queryE_N(r1, r2): generate a query q to make r1 produce 
the specified effect re1 and r2 produce N/A (i.e., d(r1, q) 
= re1 and d(r2, q) = N/A). In this case, rt1  rc1   (rt2 
 rc2). 

 queryE_I(r1, r2): generate a query q to make r1 produce 
the specified effect re1 and r2 produce Indeterminate 



(i.e., an error in the process of evaluation). d(r1, q) = re1 
and d(r2, q) = I(D) when re2= Deny or I(P) when re2= 
Permit. 

 queryI_N(r1, r2): generate a query q to make r1 produce 
Indeterminate and r2 produce N/A. In this case, d(r1, q) 
= I(D) when re1= Deny or I(P) when re1= Permit. d(r2, 
q) = N/A. 

 queryN_N(r1, r2): generate a query q to make both r1 
and r2  produce N/A (i.e., d(r1, q) = N/A, d(r2, q) = N/A). 
In this case,  ( rt1  rc1)   ( rt2  rc2). 

 queryI_I(r1, r2): generate a query to make both r1 and r2 
produce Indeterminate.  

Using the above functions, we can formalize the algorithms 
for each pair of the combining algorithms according to the 
formalized semantic difference [14]. Consider Deny-overrides 
and Permit-overrides as an example. Algorithm 1 below 
describes the query generation process based on Theorems 1 
and 2. According to Theorem 1, if the rules are all permit rules 
or all deny rules, they are functionally equivalent and thus no 
query can be generated. This is corresponding to lines 1-4 in 
Algorithm 1. According to Theorem 2, if a query makes a pair 
of permit and deny rules produce Permit and Deny (or I(D)) 
respectively (i.e., condition (a) in Theorem 2), then Deny-
overrides and Permit-overrides produce different responses to 
this query. This is corresponding to lines 6-18 in Algorithm 1. 
Similarly, if a query makes a pair of deny and permit rules 
produce Deny and I(P) respectively (i.e., condition (b) in 
Theorem 2), Deny-overrides and Permit-overrides also 
produce different responses to this query. This is done by lines 
19-26 in Algorithm 1.  

Algorithm 1: query(P=<PT, Deny-overrides, R>, P'=<PT, 
Permit-overrides, R>) 
Function: generate q such that d(P, q) ≠ d(P', q) if feasible. 
Input: P=<PT, Deny-overrides, R>, P'=<PT, Permit-
overrides, R> 
Output: query q or null 

1. if rei= Permit for all i (1 i n)  // Theorem 1 
2.     return null; 
3. else if rei= Deny for all i (1 i n) // Theorem 1 
4.       return null; 
5. else // Theorem 2 
6.     for ri = 1st permit rule to last permit rule, do   
7.         for rj =1st deny rule to last deny rule, do: 
8.             q = queryE_E(ri, rj); 
9.             if (q!=null)    
10.                   return q; 
11.              else 
12.                   q = queryE_I(ri, rj); 
13.                   if (q!=null)    
14.                          return q; 
15.                   end if 
16.               end if 
17.           end for 
18.      end for  // condition (a)  
19.      for ri = 1st deny rule to last deny rule, do:     
20.           for rj = 1st permit rule to last permit rule, do: 
21.               q = queryE_I(ri, rj); 
22.               if (q!=null)    
23.                   return q;  

24.               end if 
25.            end for 
26.      end for // condition (b)  
27.      return null; 
28. end if 
 

B．Transforming XACML Constructs to Z3-str 

The aforementioned basic query generation functions are 
realized by transforming XACML constructs (i.e., targets and 
conditions) to the input of Z3-str, executing Z3-str with the 
transformed input, and translating the result of Z3-str to an 
XACML query. Converting XACML targets and conditions 
consists of two steps. In the first step, attributes in the given 
targets and conditions (i.e., rt1, rc1, rt2, and rc2 in the 
aforementioned basic query generation functions) are defined 
as typed variables in Z3-str. The attributes have to be renamed 
in Z3-str because the syntax of identifiers is different. The data 
type of each XACML attribute is also changed to a data type in 
Z3-str. XACML3.0 has 17 basic data types: string, Boolean, 
integer, double, time, date, dateTime, anyURI, hexBinary, 
base64 Binary, dayTimeDuration, yearMonthDuration, 
rfc822Name, x500Name, xpathExpression, ipAddress, and 
dnsName. Each of these data types can be mapped to a basic 
data type or data structure in Z3-str. For example, date in 
XACML can be corresponding to a record with three integer 
fields. In the second step, the logical expressions of targets and 
conditions are converted into Z3-str expressions. As the 
conversion involves many non-trivial details, here we use some 
examples to illustrate the idea. Consider the following rule 
target in XACML (for clarity, URI links are omitted):  

<AnyOf> 
      <AllOf> 
           <Match MatchId="…:function:string-equal"> 
                 <AttributeValue DataType="…string">book</AttributeValue> 
                 <AttributeDesignator AttributeId="…resource:resource-id" 
                        Category="…attribute-category:resource"  
                        DataType="…string" MustBePresent="true"/> 
                 </AttributeDesignator> 
            </Match> 
            <Match MatchId="…:function:string-equal"> 
                 <AttributeValue DataType="…string">buy</AttributeValue> 
                 <AttributeDesignator AttributeId="…:action:action-id"  
                      Category="…:attribute-category:action"  
                      DataType="…string" MustBePresent="true"/> 
                 </AttributeDesignator> 
            </Match> 
       </AllOf> 
       <AllOf> 
            <Match MatchId="…function:string-equal"> 
              <AttributeValue DataType="…string">teacher</AttributeValue> 
              <AttributeDesignator AttributeId="…subject:subject-id"  
                      Category="…subject-category:access-subject"  
                      DataType="…string" MustBePresent="true"/> 
              </AttributeDesignator> 
            </Match> 
        </AllOf> 
</AnyOf> 
<AnyOf> 
       <AllOf> 
            <Match MatchId="…function:string-equal"> 
            <AttributeValue DataType="…string">workday</AttributeValue> 
               <AttributeDesignator AttributeId="…environment:day"  
                      Category="…environment-category: environment"  
                      DataType="…string" MustBePresent="true"/> 
               </AttributeDesignator> 



            </Match> 
        </AllOf> 

</AnyOf> 

The above target has the same meaning as the following 
logic formula:  

((resource-id = book  action-id = buy)  
 subject-id = teacher)  (day=workday)  

where attributes resource-id, action-id, subject-id, and day are 
all of the string type. A non-error query should provide a value 
for each attribute because of MustBePresent="true". To 
generate a query to satisfy the target condition, it can be 
converted into the following Z3-str input: 

(declare-variable resourceid String) 
(declare-variable actionid String) 
(declare-variable subjectid String) 
(declare-variable day String) 
(assert (and (or (and (=resourceid "book")(= actionid 

"buy")) (and (=subjectid "teacher"))) (or (and (= day 
"workday"))))) 

(check-sat) 
(get-model) 

The “declare-variable” statements define variables for the 
attributes, and the “assert” expression describes the constraint 
to be solved. 

For query generation functions queryE_E(r1, r2), 
queryE_N(r1, r2), queryN_N(r1, r2), we only need to make the 
targets and conditions true or false (e.g., rt1  rc1  rt2  rc2 for 
queryE_E(r1, r2)). The other functions, queryE_I(r1, r2), 
queryN_I(r1, r2), and queryI_I(r1, r2), however, generate 
queries to produce Indeterminate by triggering an error status. 
Generation of such queries is much more complicated as 
discussed below. Typically, such a query should make part of a 
target (or condition) produce an error while ensuring the other 
part to evaluate to true or false. Therefore, query generation 
may involve selecting an appropriate attribute to trigger an 
error. In the above example, if we choose attribute day to 
trigger an error (e.g., a query that provides no value for day), 
then we have to ensure the resultant query must satisfy the 
following condition:  

 ((resource-id=book  action-id = buy)  subject-id = teacher) 

If a query does not meet this condition, then day=workday 
will not be evaluated. Thus, it will not produce an error. If we 
choose subject-id to produce an error, then the resultant query 
should make (resource-id = book  action-id = buy) evaluate 
to false, otherwise subject-id = teacher will not be evaluated.  

Generally, there are a great variety of errors that can result 
in a response of Indeterminate in XACML 3.0 [12]. The errors 
can be caused by problematic policies, queries, or both. Here 
our focus is on the errors caused by queries, assuming that the 
given policy is well-defined except for incorrect combining 
algorithm. In addition, queryE_I(r1, r2), queryN_I(r1, r2), and 
queryI_I(r1, r2) need to consider interactions of attributes in 
both rules. When both rules use the same set of attributes, it 
may be infeasible to create a particular type of error to obtain 
Indeterminate. This is because a query making one rule 
evaluate to I(D) or I(P) may also make the other rule evaluate 
to I(D) or I(P).  

V. EMPIRICAL STUDIES 

We have implemented our approach based on Balana [1] 
and applied it to nine case studies with different levels of 
complexity. The case studies are summarized in Table I. K-
market is a sample application of Balana with a total of 12 
rules in three policies. It is the only one that is originally 
encoded in XACML 3.0. itrust, pluto, conference, and fedora 
are real-world policies from literature. They were originally 
encoded in XACML 2.0 or 1.0. In this paper, we manually 
converted them into XACML 3.0 with the same semantics. 
itrustX (X=5, 10, 20, or 40) is a policy synthesized from itrust. 
It has X times as many rules as itrust. The new rules in itrustX 
are created by replicating the existing rules with new attribute 
values. Because the real-world policies from literature have a 
small number of rules, we use itrustX to evaluate whether or 
not our approach is applicable to large-scale policies.  

TABLE I. SUBJECT POLICIES OF EMPIRICAL STUDIES 

Name #Rules 
Combining 
algorithm 

Equivalent 
combining 
algorithms 

K-market  [1] 12 Deny-overrides None 

itrust2 64 First-applicable 
Permit-overrides/ 
Deny-overrides 

pluto  21 Permit-overrides None 

conference 15 Permit-overrides None 
fedora3 12 Deny-overrides None 

itrust5 320 First-applicable 
Permit-overrides/ 
Deny-overrides 

itrust10 640 First-applicable 
Permit-overrides/ 
Deny-overrides 

itrust20 1,280 First-applicable 
Permit-overrides/ 
Deny-overrides 

itrust40 2,560 First-applicable 
Permit-overrides/ 
Deny-overrides 

 
We treat the combining algorithm in each original policy as 

the correct one and inspect each policy to determine which 
combining algorithms are functionally equivalent and which 
are non-equivalent for each given policy. As shown in Table I, 
the policies in itrust and its variations have equivalent 
algorithms. As the correct combining algorithms in the given 
policies are already assumed, the goal of our evaluation is to 
demonstrate whether or not our approach can detect incorrect 
combining algorithms and functionally equivalent combining 
algorithms. Let P0 and CA0 denote the correct policy (or policy 
set) and original combining algorithm respectively. We used 
the following protocol to conduct the experiment:  

 Use the correct policy P0 to create a policy or policy 
set P with a different combining algorithm CA (i.e., 
CA ≠ CA0); 

 Apply our approach to P, comparing CA to each of 
the other combining algorithms (including CA0) and 
try to generate a query for each pair;  

 If no query is generated for <P, P0> and d(P, q) = 
d(P0, q) for each query q generated in the above step, 
then CA is correct and functionally equivalent to CA0, 
otherwise CA is incorrect. 

                                                           
2 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=start 
3 http://www.fedora.info 



The results of our experiments have shown that our 
approach was able to identify all correct and equivalent 
combining algorithms as defined in Table I. Consider itrust (or 
itrustX). First-applicable, Deny-overrides, and Permit-
overrides are equivalent. When any two of them were 
compared, no query was generated, which means they have no 
difference. When one of them was compared to Deny-unless-
permit or Permit-unless-deny, however, a query was generated, 
which means they are different. In K-market, pluto, conference, 
or fedora, a query was generated for each pair of combining 
algorithms. This means that all the combining algorithms are 
different with respect to the given policy target and rule.  

VI. RELATED WORK 

In Cirg [9], tests are generated from counterexamples 
produced by the change-impact analysis of two synthesized 
versions. The difference of the two versions of a policy targets 
a test coverage goal (e.g., rule, or condition). Targen [10] is a 
test generator for XACML policies that derives access requests 
to satisfy all the possible combinations of truth values of the 
attribute id-value pairs found in a given policy. Access requests 
generated by Cirg and Targen typically use a limited number of 
subject, resource, action, and environment attributes. A real 
request, however, could use any combination of attributes. 
Because requests are encoded in XML, they must conform to 
the XML Context Schema. To address this issue, Bertolino et 
al., have developed different test generation algorithms by 
considering the structures of the Context Schema [2][3][5]. 
These algorithms can generate requests that use more than one 
subject, resource, action, or environment attribute. They can 
also produce robustness tests, where invalid attribute values are 
generated randomly.  

Li et al. have applied symbolic execution technique to 
generation of access requests for testing XACML policies [8]. 
They convert the policy under test into semantically equivalent 
C Code Representation (CCR) and symbolically execute CCR 
to create test inputs and translate the test inputs to access 
control requests. Mutation of the XACML policies [4][11] has 
been commonly used to evaluate the above testing methods. In 
this paper, however, we use combining algorithm-based 
mutants to generate queries for determining whether or not the 
given combining algorithm is correct.  

VII. CONCLUSIONS 

We have presented the fault-based approach to automated 
test generation for determining existence or absence of 
incorrect combining algorithms in XACML3.0 policies. Based 
on the formalized semantic differences between combining 
algorithms, our approach exploits a constraint solver to 
generate a query to show the difference between the given 
combining algorithms and each of the mutants. Our case 
studies have demonstrated that the approach is effective and 
applicable to sizeable policies. As a byproduct, our approach 
can be a useful tutoring tool for learning about XACML 
combining algorithms and their essential differences. When a 
user is uncertain about which combining algorithm should be 
used, she may compare similar algorithms and generate 
requests to show the difference. This will help the user get an 

accurate understanding and choose the right combining 
algorithm.  

This paper offers a first step towards general fault-based 
testing of XACML policies. Incorrect combining algorithms 
are just one type of faults in XACML policies. Other fault 
types include incorrect (policy set, policy, and rule) target, 
incorrect rule effect, and incorrect rule conditions [4][11]. Our 
future work will investigate fault-based test generation 
algorithms for each of these uncovered fault types.     
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