
Design of a Dashboard of Software Metrics for
Adaptable, Energy Efficient Applications

Vladimir Ivanov, Daria Larionova, Dragos Strugar, Giancarlo Succi
Innopolis University
Innopolis, Russia

{v.ivanov, d.larionova, d.strugar, g.succi}@innopolis.ru

Abstract—With the proliferation of internet-based software
solutions worldwide came the need to maintain these products
as well as to monitor the metrics collected within the products
themselves. It has been a major challenge throughout the years
to come up with an effective User Interface (UI) design that could
be tailored to employees with multiple roles in the organization,
especially in rapidly changing modern environments. Developing
a self-adjusting dashboard not only could increase managers’
productivity, but could potentially grow into a fully-fledged
Adaptable System. However, such a system would carry a broad
set of additional requirements. This paper presents the synergy
of the adaptable systems in production and effective dashboard
design according to the industry standards.

Index Terms—Adaptable Systems, Software Metrics, Energy-
saving Applications

I. INTRODUCTION

The goal of our ongoing research was to come up with a
self-adjusting metric analysis system that would allow man-
agers as well as engineers to make more informed decisions
in the development of Adaptable, Energy Efficient solutions.

Developing a product first requires an understanding of the
problem that is expected to be solved. Therefore, for this
system a customizable dashboard can be used, which is a well-
proven solution for this purpose.

Thus, we have created a web application to demonstrate
our vision of the dashboard best-suited for this use case. The
purpose of the global data collection system, to which the
dashboard belongs to, is to present the obtained data in a
specific structure and form, as well as to provide the users
with an overview of the collected information.

Numerous academic papers emphasize the importance of
the good design for the dashboard. In [4], Few points out
that currently the entire purpose of dashboards is not only to
display all the necessary information, but rather to provide a
medium for communication and team collaboration.

The literature review section is primary based on the works
of Zorin [7], [18], Pishulin [6], [12], Valiullin [16], whose
preceding studies grounded the system that we am currently
developing. It is also based on the work of Sarikaya, Correll,
Bartram, Tory, and Fisher [13], who performed a system-
atic literature review on designing dashboards for different
domains. These authors split the dashboards into types by
different criteria, and explained the common patterns and
features for each of them. Finally, it is based on the work
of Yigitbasioglu, and Velcu [17], who also reviewed many

sources for designing the dashboard, and suggested the mech-
anism for making decisions in their functionality.

Section II in greater detail the common problems which
developers of the dashboard are likely to encounter. Section III
summarizes fundamental goals and metrics of the GQM (Goal
Question Metric) model, as required by software engineers
for the evaluation of their performance. Section IV covers
possible features of the future dashboard. Section V lists some
common visualization patterns. Section VI shows the overall
design of the working solution. Then, sections VII and VIII
talk about the Complex Adaptive Systems and how they map
to our use case. And finally, section IX gives the final thoughts
and reflections.

II. PROBLEMS DESIGNATION

According to Valiullin [16], one of the main challenges is
in selecting more appropriate metrics and displaying them in a
meaningful and structured way. This choice has great influence
on the understanding of those metrics. The dashboard should
“provide intuitive, actionable, flexible, and programmable vi-
sualization to support effective decision making.”

In addition, effective representation of selected metrics [16]
is also a great challenge that we were facing. Solving this
problem would allow users to easily detect and address the
issues that may occur during the development process.

To solve these problems and choose more appropriate vi-
sualization techniques for more effective representation, Brath
and Peters [1] suggest answering the following three questions:

• What metrics does the user need to see?
• What context does each metric require to make it mean-

ingful?
• What is the visual representation that best communicates

the metric?
In [14], the authors suggest to focus on the important

metrics, with concise visualization. Such an approach that
reduces redundancy by focusing on the goals obtained during
the requirement collection & analysis phase is very useful.
Moreover, it helps to cope with making the wrong decisions
in certain situations [17]. A similar view on data visualization
is presented in [8], where the authors insist that the dashboard
should be designed to be useful. This does not mean that it
should contain all possible information that can be visualized,
but only the necessary and sufficient data. The authors sup-
plement this idea by suggesting the concepts of the “right”



Fig. 1. Correspondence of the dashboard types and functionality. (Taken from
[3, p. 103])

data and “right” visualization technique. Therefore, it is first
necessary to determine which metrics should be displayed and
explain the rationale of their choice. Second, choose the way
to present them to the user, which can consequently minimize
the time required for understanding them.

In addition, as noticed in [13], the design of the dashboard
and its functionality greatly depends on its type. Few [4] and
Eckerson [3] introduced three types of dashboards. Eckerson
represents them in the form of a pyramid, with the operational
dashboard type at the base, the tactical in the middle layer,
and the strategic at the top (as shown in figure1). The three
dashboard types differ in purpose and level of abstraction
and interaction. According to this model, the strategic view
is intended for monitoring the current situation. This allows
minimum interaction with the user, contains an overview and
consists of the most meaningful data. This is because, as
mentioned in [13], the people often make screenshots and
put them onto slides for showing a general picture. The
purpose of the tactical view is to enable the analysis. This
should contain more detailed information from the tactical
view. The operational view should present a thorough form
of the collected data and metrics. That would allow the user
to summarize and also would help to find the reasons which
led to this state, and come to possible solutions. In addition,
according to the results of the surveys by Zorin in [18], the
operational becomes more effective than the tactical and the
strategic dashboard type.

In [17], Yigitbasioglu and Velcu suggest a path for making
design decisions, that requires determining the four character-
istics of a dashboard under development:

• its purpose is enabling
– consistency,
– monitoring,
– planning, and,
– communication,

• users and their
– tasks,
– knowledge and
– cognitive styles,

• design features (functional or visual) and
• outcomes, that is performance progress reached by this

dashboard (i.e. improved speed, consistency etc.).

Taking into account that respondents of Zorin’s surveys [18]
are potential users, we can presume the variance in their
education levels, age, company size and the position they are
working on. Users prioritized their needs in the dashboard in
the following order from the most to the least demanded:

1) performance monitoring;
2) planning;
3) communication;
4) measurement consistency.
Therefore these needs along with their priorities should

be taken into account when architecting a new dashboard
from scratch. The next couple of sections provide a more
comprehensive description of how these can be formed in the
GQM model.

III. THE MAIN GOALS AND METRICS

For selecting the necessary metrics in [8], the authors
suggest using GQM+Strategies. This concept is a traditional
Goal-Question-Metric approach supplemented by the links
between different layers of organizational goals, i.e., high-
level and measurement goals. According to this approach, the
authors ensure that a good dashboard should meet business
goals. Hence, the development of such a dashboard requires
the participation of all stakeholders.

As part of the study [18], Zorin conducted surveys with
the representatives of software engineering companies, and
extracted six common goals they wanted to achieve:

• Improving effort estimation efficacy;
• Using resources in a more efficient way;
• Executing testing activities in a more efficient and sys-

tematic way;
• Improving the quality of the development process;
• Completing projects successfully;
• Completing projects phases successfully.

Later in [7], Zorin summarizes them, and extracts three main
goals:

• more effective effort estimation;
• more efficient use of resources;
• better software quality and development process.

The author divides the metrics needed for evaluating the
achievement of these goals into five groups, displaying the:

• Progress status of the project;
• Speed of the work performed;
• Status of testing;
• Status of software quality;
• Effectiveness of effort estimation.

In addition, Zorin distinguishes the most frequent metrics:
1) Iteration Burndown chart;
2) Team velocity;
3) Code coverage;



4) Effort estimation accuracy.
Finally, the author summarized the results in the GQM model,
shown in figure 2.

In [6], [12], Pishulin validated the results of the surveys by
Zorin [7], [18]. The author investigated three goals highlighted
in those studies, and determined the most suitable metrics
for measuring them. For assessing the effectiveness of effort
estimation, Pishulin identified the following key metrics:

1) Iteration Burndown;
2) Effort Estimation Accuracy;
3) Team Velocity.

For the evaluation of software quality and development pro-
cess, the metrics are:

1) Passed Tests;
2) Code Coverage;
3) Unresolved Defects;
4) Class / Method Length;
5) Iteration Burndown;
6) Defect Removal;
7) Defected Density.

For the goal of more efficient use of resources, the author
did not provide any information due to the lack of obtained
information.

However, in [16], Valiullin suggested to spread this set of
primary metrics and allow the user to create new metrics
from existing ones by combining them in different ways.
For describing the available manipulations, the author splits
metrics to three types:

• raw,
• composite
• expression.
The raw metrics are those extracted directly from the

collected user activities and source code (primary set of
metrics described above). The composite metrics are the ones
constructed from two raw or composite metrics by applying:
1. Simple arithmetic operations:
1.1. Addition;
1.2. Subtraction;
1.3. Multiplication;
1.4. Division;
2. Simple mathematical functions:
2.1. Average;
2.2. Maximum;
2.3. Minimum.

The expression metrics are obtained from one or more Raw
or Composite type, and can be aggregated by some user-
defined arithmetic expression.

IV. FUNCTIONALITY

The main mission of the dashboard is allowing the user
to monitor key metrics in terms of completion of predefined
goals. Furthermore, the dashboard should provide various
toolkits for tracking the development progress and product
quality, and executing comparison of the current and perfect

values [18]. Despite the amount of functionality, it is substan-
tial to fit the dashboard to a single computer screen without
compromising the content [4], [17].

In [8], the authors point out that understanding the displayed
data should require the minimum effort from the user. The
most relevant information should be provided with a “push”
strategy. But at the same time, support interactivity with
the ability to switch to “pull” mode. Moreover, the authors
notice that the most relevant information should attract user’s
attention. However, at the same time, it is very important to
find a balance and avoid a motley design. The authors suggest
displaying the same data every time in the same place in order
to make users become accustomed to the design.

One of the main features that the dashboard should imple-
ment is alerting users about the deviations of measurements
from normal values. In [16], the author suggested notifying
the user about abnormalities by coloring metric tiles according
to their trend. For example, red could be used for going out
of predefined by the user predefined range, green for those
in the range and any other for neutral or default. [8], [12],
[13] covered an idea of using arrows for showing the current
tendency. The method in [3] can be useful for color-blind
people to help them with correct interpretation of results. At
the same time, it is significant not to overuse colors, visual
structures and other catchy elements of design, in order not to
overload the view [17].

According to [13], it is significantly important to make
the dashboard customizable and adaptable to different users
and situations. This objective can be obtained by allowing the
users to set the goals, by themselves select the metrics to be
displayed and set their own admissible and critical borders.
Furthermore, the author draws our attention to the fact that
filters [13], [16] and comparison support [13] are able to
supplement the dashboard with more flexibility.

In [16], Valiullin continues this idea, and notes that the
system under study should be adaptable for any project goal
and provide multivariate analysis. The author states, that this
adaptability can be satisfied with the implementation of roles
and settings for choosing metrics for each project and goal
individually. Furthermore, since users can work on several
projects at the same time, for convenience of monitoring
their status, the dashboard should provide support for multiple
projects, and define separate sets of metrics and goals for all
of them [16].

Another frequently mentioned concept lies in presenting
different views on collected data and metrics, which can be
reached by two ways.

The first one is to introduce roles with specific goals. There-
fore, according to the goals, different analysis and visualization
techniques should be selected with different points of view
about the data [2]. In addition, roles can help to solve the
problem of data visibility and privacy [13].

The second one is providing different levels of abstractions
and different degree of details presented to the user. For
introducing the general view about the situation, there should
be a way to combine many metrics to several numbers, and



Fig. 2. Summary of the GQM with the most common aspects in bold (Taken from [7])

avoiding both detailed and redundant information [2]. More
complete and thorough views can be reached by drill-down
navigation or an “exploration mode” [4], [11], [13], [16]. It
means that for ”exploring” the nature of a certain result, it
should be possible to switch between a generic and a more
detailed view of the same metrics down to the raw data view.
Using this technique would provide users with convenience in
accuracy of data analysis, performed automatically [13].

According to [6], respondents want to have the ability to
watch individual team members’ metrics that can be satisfied
by introducing hierarchical views to collected data,on the part
of individual developers, teams and even the whole company
[16]. Furthermore, interviewees would like the dashboard to
display possible reasons of metrics changes and recommen-
dations for recovering and improvement of current situation.
Thus, the what-if simulation can take place [13], [18].

V. VISUALIZATION

Considering the structure of the dashboard in [16], Valiullin,
relying on solutions from [8], [9] suggests the design based
on Andon board with tiles, where each tile shows a numeric
metric. This representation can speed up the understanding of
the data and decision making as well as providing a unified
way of metrics visualization in order to maintain the system
scalability. However, there pointed a need in specific views for
some metrics.

In [17], the authors make a investigation on data repre-
sentation formats. Some researchers prefer graphical forms to
tabular ones, whereas some place tables over graphs. Others
do not exalt any of them believing that the choice of represen-
tation format highly depends on the task it is intended to solve.
Graphs are more useful for tasks implicating comparisons and
studying relationships of data, while the tabular form is more

suitable for obtaining the certain information. Thereby, the
authors admit possibility of switching to the displaying format
more preferable by the user. In [16] for detailed view of the
metrics, it is suggested to use two representations: values the
metric consists of and the chart with its behaviour.

[5] suggests using different treemaps, texture, and bump
mapping; animated zooming and panning for visualization of
metrics. However, in [3] the author underlines that sometimes
even at first glance simple features can bring additional com-
plexity. The ease of use becomes one of the most important
characteristic of any product. As noticed in [13], some au-
thors even suggest reducing the interactivity for simplifying
the system. Therefore, finding a balance in flexibility and
customization is crucial.

VI. RESULTS

This section focuses on establishing a strong relationship
between the metrics and the goal. We are also going to present
screenshots and various UI components we created. Results are
presented in a form of a web page built with state-of-the-art
front end web development library React.js.

As we noted earlier, the combination of flexibility and
customization is a major factor in the User Experience (UX).
That is precisely why we chose to create numerous widgets
that users have control over. These widgets encapsulate graphs,
charts, percentages, numerical values and time management
tools alongside other key functionalities. They are designed
to be easily reusable and re-sizeable. This also contributes to
the fact that the solution is fully responsive and works on all
screen sizes. Some of the examples you can see on figures 4,
5, and 6.



Fig. 3. HTML Web Interface Results (InnoMetrics)

Fig. 4. Doughnut Graph Representation

Fig. 5. Polar Graph Representation

Fig. 6. Radial Graph Representation

Figure 3 showcases all the parts of the dashboard. The
page contains 14 metrics selected for the study. Each of these
metrics is placed in one of the widgets, or so called tiles.
There is a total of 3 bar graphs, 2 line charts, 4 percentage-
based values, 4 numerical values and 1 date value.

This prototype assumes that the software development team
is using the Scrum methodology, with 7 iterations completed.
Each iteration is two weeks long. The task of this prototype
is to find out if the relationship between the metrics and the
goal is obvious to the engineers. In addition, it is also very
important to immediately see the most representative metrics
for the Metric-Goal relationship.

This is precisely why we chose to make the connection
with Adaptable systems. Not only would applying the notions
from Complexity Theory allow the dashboard to present the
most important metrics for certain situations, but it would also
prevent it from being susceptible to change.



VII. COMPLEX ADAPTIVE SYSTEMS

Realizing that the dashboard needs to adapt to rapid change
in today’s software development life-cycle, we suggest that
modern dashboards should be a part of Complex Systems,
more specifically, the Complex Adaptive Systems.

We represent each of the software development metrics,
depicted as widgets on the 3, as agents within the system.
Some of them are dependent on one another and some of
them are not. The ones who are, are not strictly interacting in
a linear, predictable way.

By embracing adaptation these agents have the potential to
synchronize their internal states with the other agents in the
system. Additionally, the system should be able to recognize
these changes and self-adjust with the emergence of globally
coherent patterns of adjustment developing.

Then, this Complex Adaptive System, the dashboard, should
be able to feed back this information to micro-level agents. In
order to preserve the relevance of certain metrics, the system
makes the natural selection based on their fitness criteria to
the environment. In our case, the fitness function is broadly
defined as follows: “An agent has a higher contribution/fitness
to the overall system if and only if a slight change in that
specific metric would yield a significant change in the overall
system fitness, the difference between the expected value and
the actual value is above average, or a metric answers some
custom questions that dashboard users may have”. Applied and
contextualized to our use case, the metrics are more relevant
if the current value greatly differs from the expected one, or
a slight change in a specific metric may yield a substantial
increase in the well-being of the entire system.

Such a system embraces the complex dynamic between
the micro-level components (metrics) and the overall system
(the dashboard). The interaction between the differentiation
of micro- and macro-level agents with different goals and
agendas creates the core dynamic of complexity in our system.

Intrinsic to the Adaptive Systems is the notion of innovation;
i.e. coming up with novel outcomes that we could not have
predicted ahead of time. This is the crucial aspect of designing
and developing a dashboard engineered to dynamically present
the most useful metrics to the person using the dashboard. For
example, a correlation between some two metrics may yield
a significant improvement in the overall system functioning.
However, that relationship has not been made beforehand. It
is only by feeding the data to the system that it is able to
come up with the correlations which may drastically change
the overall system fitness.

The next two notions that need to explored are Non-linear
Dynamics [15] and Dynamic Equilibrium [10].

A. Non-linear Dynamics

We realize that common assumptions that managers and
stakeholders may have when creating and maintaining the
dashboards for their products are very often not close to the
real-world outcome. For example, they may think that one
metric may be very important, and that turns out not to be
true. And over time that results in a waste of their time looking

at the metric and trying to improve it, while not focusing on
the metrics that are actually significant at the moment. Put
differently, the common assumptions that stakeholders may
have about predicting the outcome based only on the initial
input do not often work out in Complex Adaptive Systems due
to their emergent complexity. Non-linear dynamics in adaptive
systems is necessary to constantly change the internal states
of the agents within the system, resulting in the change the
entire system’s state.

B. Dynamic Equilibrium

Utilizing the concept of the Dynamic Equilibrium allowed
us to embrace our GQM model to come up with the state
which has the following characteristics:

• the current state is never completely stable, which results
in the full stagnation

• the current state is never in complete chaos, where there
is nothing to bind individual actors together

• the current state is always in a so called “Dynamic
Equilibrium” where all actors are loosely bound to each
other with the plethora of room to innovate and improve

VIII. APPLYING THE COMPLEX SYSTEM TECHNIQUES TO
OUR USE CASE

As previously noted, the agents in the Complex System are
represented as widgets. Each of these widgets encapsulates one
metric that is used for maintaining and monitoring the software
development process. Different visual representation apply to
each of these metrics, of course. Some of them are more useful
and easier to think about when depicted as continuous graphs,
some of them as plan numbers, as seen on figure 3.

It is then challenging to decide how these metrics can bring
the variety, and the non-linear dynamics that Complex Systems
impose. There is a total of 14 metrics. It is only by combining
them that we will be able to achieve what we have suggested
above. We needed to have a synergy between multiple metrics
to see how they correlate to one another and how the increase
in a specific factor or a group of factors can influence the
whole system.

That is specifically why we decided to create custom wid-
gets that represent the correlation between two or more metrics
in the system. Even though such functionally complex widgets
may contain a lot of data, as they are a relevant component
to look after, they play a crucial role in the self-sustainability
and continuous evolution of the dashboard system.

An example of such a combination is shown in the figure
7. One can immediately notice a very significant property. It
is that the graph is now a complex structure consisting of two
sub-graphs: a bar graph and a colored line graph. When the
main 14 metrics we first presented, none of the structures had
more than one metric encapsulated within the widget. Now
widgets containing these complex forms with not only two
but potentially more sub-graphs indicate a special correlation
between them. Let us take a closer look at the figure 7 and
determine why this graph was chosen to be present to the
manager who is responsible for monitoring the dashboard.



Fig. 7. Correlation between Story Points and Avg. Cycle Time

To start off, it is important to note that this graph spans the
time period of exactly 14 days, the duration of one Sprint.
Therefore, X axis represents the corresponding stage of the
Sprint. Next, the Y axis is responsible for showing the amount
of Story Points that a team has managed to obtain on the
specific day. It also shows the Average Cycle Time of a task
in the sprint (measured in minutes).

From the chart it is also easy to notice that the cycle time
is fairly low, indicating that the tasks are well segmented and
there are a lot of them, as the amount of story points is not
low. However, the reason this graph is particularly interesting
is that the Average Cycle Time graph is trending downwards.
That means that it took more time for developers and designers
to complete the tasks at the beginning of the Sprint rather than
on the end of the Sprint.

There are numerous possible reasons for that, but the
manager can be certain that his/her team did not try to hurry up
at the Sprint end to finish most of the tasks because the number
of Story Points is evenly distributed throughout the week. The
manager might be mislead to thinking that that is the case
only by looking at the Average Cycle Time. The combination
of the two graphs frees him/her from that suspicion, and now
he/she can focus on other, less critical reasons why that is the
case.

Here are some of the possible reasons:

• the scope/size of the tasks is not uniformly distributed
throughout the Sprint

• the team decided to first finish the complex tasks before
moving on to easier ones

As one can see, neither of the two reasons are as critical as
the team doing most of the work at the Sprint’s end. Thereafter,
the widget managed to effectively show that information
without the manager wasting his/her precious time on tracking
down the issue that did not exist in the first place.

This is an example of an effective combination of the two
metrics that is far more useful when analyzed together rather
than separately. It was determined to be important due to the
fact that the trend was noticed in the Average Daily Cycle
Time, and that such regularity did not cause any fluctuation

in the number of Daily Story Points in the Sprint. Rather
than looking at the raw data and realizing that his/her team
is trying to do most of the work at the end of the Sprint,
manager focused his/her attention to other problems and ways
the workflow can be improved. The dashboard served as a
helper tool to get the job done by enhancing workers’ expertise
and not getting in the way of already productive existing
workflow pipelines.

IX. CONCLUSION

We have shown our previous work in the field of Software
Metrics and suggested a possible way of improving it, as well
as to give rise to the importance of designing and developing
compelling dashboards. We have previously decided on 14
key metrics for the software development process. Now, by
continuous improvement and natural selection of the most
relevant agents the dashboard should be able to achieve the dy-
namic equilibrium using non-linear dynamics. The dashboard
would also be able to combine several metrics that have a
higher chance of indicating a possible flaw in the workflow.
That does not necessarily mean that it is going to achieve
the optimal state right away, nor does it mean that just by
applying the techniques presented here will we truly solve the
problem of inadequate dashboards in general. But rather this
all means that our dashboard will try to get there over time,
by facilitating adaptation, collaboration and expertise while
avoiding “chaos”.

X. ACKNOWLEDGMENTS

The work presented in this paper was supported by the grant
of Russian Science Foundation №19-19-00623.

REFERENCES

[1] R. Brath and M. Peters. Dashboard design: Why design is important.
DM Direct, 85, 2004/10.

[2] I. D. Coman, A. Sillitti, and G. Succi. A case-study on using an
automated in-process software engineering measurement and analysis
system in an industrial environment. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages 89–
99, Washington, DC, USA, 2009. IEEE Computer Society.

[3] W. W. Eckerson. Performance Dashboards: Measuring, Monitoring, and
Managing Your Business. Wiley, 2010.



[4] S. Few. Information Dashboard Design: The Effective Visual Commu-
nication of Data. O’Reilly Media, 2006.

[5] D. Holten, R. Vliegen, and J. van Wijk. Visual realism for the
visualization of software metrics. In 3rd IEEE International Workshop
on Visualizing Software for Understanding and Analysis. IEEE, 2005.

[6] V. Ivanov, V. Pischulin, A. Rogers, G. Succi, J. Yi, and V. Zorin. Design
and validation of precooked developer dashboards. In Proceedings of
the 26th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2018. ACM, 2018.

[7] V. Ivanov, A. Rogers, G. Succi, J. Yi, and V. Zorin. Precooked developer
dashboards: What to show and how to use. In Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings, ICSE ’18, pages 402–403, New York, NY, USA, 2018.
ACM.

[8] A. Janes, A. Sillitti, and G. Succi. Effective dashboard design. Cutter
IT Journal, 26:17–24, 01 2013.

[9] A. Janes and G. Succi. Lean Software Development in Action. Springer
Berlin Heidelberg, 2014.

[10] Y. Lajoie, N. Teasdale, C. Bard, and M. Fleury. Attentional demands
for static and dynamic equilibrium. Experimental brain research,
97(1):139–144, 1993.

[11] L. López, S. Martı́nez-Fernández, C. Gómez, M. Choraś, R. Kozik,
L. Guzmán, A. M. Vollmer, X. Franch, and A. Jedlitschka. Q-rapids
tool prototype: Supporting decision-makers in managing quality in
rapid software development. In Lecture Notes in Business Information
Processing, pages 200–208. Springer International Publishing, 2018.

[12] V. Pishulin. to clarify later. 2018.
[13] A. Sarikaya, M. Correll, L. Bartram, M. Tory, and D. Fisher. What do

we talk about when we talk about dashboards? IEEE Transactions on
Visualization and Computer Graphics, pages 1–1, 2018.

[14] M. Staron, W. Meding, J. Hansson, C. Höglund, K. Niesel, and
V. Bergmann. Dashboards for continuous monitoring of quality for
software product under development. In Relating System Quality and
Software Architecture, pages 209–229. Elsevier, 2014.

[15] J. M. T. Thompson, M. Thompson, and H. B. Stewart. Nonlinear
dynamics and chaos. John Wiley & Sons, 2002.

[16] A. Valiullin. Designing a dashboarding system for visualization of non-
invasively collected metrics. 2018.

[17] O. M. Yigitbasioglu and O. Velcu. A review of dashboards in perfor-
mance management: Implications for design and research. International
Journal of Accounting Information Systems, 13(1):41–59, mar 2012.

[18] V. Zorin. to clarify later. 2017.


	Introduction
	Problems Designation
	The main goals and metrics
	Functionality
	Visualization
	Results
	Complex Adaptive Systems
	Non-linear Dynamics
	Dynamic Equilibrium

	Applying the Complex System techniques to our use case
	Conclusion
	Acknowledgments
	References

