JCP 2015 Vol.10(2): 115-129 ISSN: 1796-203X
doi: 10.17706/jcp.10.2.115-129
doi: 10.17706/jcp.10.2.115-129
Qasim Al-shebani, Prashan Premaratne, Peter James Vial, Shuai Yang
School of Electrical, Computer and Telecommunication Engineering Faculty of Engineering and information Sciences, University of Wollongong, Australia.
Abstract—Door access control systems based on face recognition are geared towards simplifying difficult face recognition problems in uncontrolled environments. Such systems are able to control illumination, offer neutral pose and improve the poor performance of many face recognition algorithms. Door access control systems control illumination and pose in order to overcome face recognition problems. While there have been significant improvements in the algorithms with increasing recognition accuracy, very little research has been conducted on implementing these in hardware devices. Most of the previous studies focused on implementing a simple principal component analysis in hardware with low recognition accuracy. In contrast, the use of a Gabor filter for feature extraction and the nearest neighbour method for classification were found to be better alternatives. Dramatic developments in field programmable gate arrays (FPGAs) have allowed designers to select various resources and functions to implement many complex designs. The aim of this paper is to present the feasibility of implementing Gabor filter and nearest neighbour face recognition algorithms in an FPGA device for face recognition. Our simulation using Xilinx FPGA platforms verified the feasibility of such a system with minimum hardware requirements.
Index Terms—Access control, face recognition, field programmable gate array.
Abstract—Door access control systems based on face recognition are geared towards simplifying difficult face recognition problems in uncontrolled environments. Such systems are able to control illumination, offer neutral pose and improve the poor performance of many face recognition algorithms. Door access control systems control illumination and pose in order to overcome face recognition problems. While there have been significant improvements in the algorithms with increasing recognition accuracy, very little research has been conducted on implementing these in hardware devices. Most of the previous studies focused on implementing a simple principal component analysis in hardware with low recognition accuracy. In contrast, the use of a Gabor filter for feature extraction and the nearest neighbour method for classification were found to be better alternatives. Dramatic developments in field programmable gate arrays (FPGAs) have allowed designers to select various resources and functions to implement many complex designs. The aim of this paper is to present the feasibility of implementing Gabor filter and nearest neighbour face recognition algorithms in an FPGA device for face recognition. Our simulation using Xilinx FPGA platforms verified the feasibility of such a system with minimum hardware requirements.
Index Terms—Access control, face recognition, field programmable gate array.
Cite: Qasim Al-shebani, Prashan Premaratne, Peter James Vial, Shuai Yang, "The Feasibility of Implementing a Face Recognition System Based on a Gabor Filter and Nearest Neighbor Techniques in an FPGA Device for Door Control Systems," Journal of Computers vol. 10, no. 2, pp. 115-129, 2015.
General Information
ISSN: 1796-203X
Abbreviated Title: J.Comput.
Frequency: Bimonthly
Abbreviated Title: J.Comput.
Frequency: Bimonthly
Editor-in-Chief: Prof. Liansheng Tan
Executive Editor: Ms. Nina Lee
Abstracting/ Indexing: DBLP, EBSCO, ProQuest, INSPEC, ULRICH's Periodicals Directory, WorldCat,etc
E-mail: jcp@iap.org
-
Nov 14, 2019 News!
Vol 14, No 11 has been published with online version [Click]
-
Mar 20, 2020 News!
Vol 15, No 2 has been published with online version [Click]
-
Dec 16, 2019 News!
Vol 14, No 12 has been published with online version [Click]
-
Sep 16, 2019 News!
Vol 14, No 9 has been published with online version [Click]
-
Aug 16, 2019 News!
Vol 14, No 8 has been published with online version [Click]
- Read more>>