[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Parallel, Distributed, and Reconfigurable Computing, and Networking
CLAHE Implementation and Evaluation on a Low-End FPGA Board by High-Level Synthesis
Koki HONDAKaijie WEIMasatoshi ARAIHideharu AMANO
Author information
JOURNAL FREE ACCESS

2021 Volume E104.D Issue 12 Pages 2048-2056

Details
Abstract

Automobile companies have been trying to replace side mirrors of cars with small cameras for reducing air resistance. It enables us to apply some image processing to improve the quality of the image. Contrast Limited Adaptive Histogram Equalization (CLAHE) is one of such techniques to improve the quality of the image for the side mirror camera, which requires a large computation performance. Here, an implementation method of CLAHE on a low-end FPGA board by high-level synthesis is proposed. CLAHE has two main processing parts: cumulative distribution function (CDF) generation, and bilinear interpolation. During the CDF generation, the effect of increasing loop initiation interval can be greatly reduced by placing multiple Processing Elements (PEs). and during the interpolation, latency and BRAM usage were reduced by revising how to hold CDF and calculation method. Finally, by connecting each module with streaming interfaces, using data flow pragmas, overlapping processing, and hiding data transfer, our HLS implementation achieved a comparable result to that of HDL. We parameterized the components of the algorithm so that the number of tiles and the size of the image can be easily changed. The source code for this research can be downloaded from https://github.com/kokihonda/fpga_clahe.

Content from these authors
© 2021 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top