[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Type 1 Diabetes Mellitus Saudi Patients' Perspective on the Adopting IoT-Enabled CGM: Validation of Critical Factors in the IAI-CGM A Framework

, ,

DOI: http://dx.doi.org/10.15439/2023F4851

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 7381 ()

Full text

Abstract. The increasing prevalence of diabetes, particularly in Saudi Arabia, calls for effective self-management tools to monitor blood sugar levels, such as Continuous Glucose Monitors. These are medical devices that can be used to track the glucose levels of people without a fingerstick blood sample. However, the adoption of IoT-enabled Continuous Glucose Monitors (IoT-CGM) can be challenging due to the use of new technology. This study proposes the Intention to Adopt IoT-enabled Continuous Glucose Monitors (IAI-CGM) a framework, which incorporates practical, technological, and user behaviour considerations based on the Technology Acceptance Model (TAM). The study defines 8 hypotheses that are analysed using structural equation modelling. Data was collected; from 873 type 1 diabetes patients (T1DM) from Saudi Arabia. The model predicts the significant impact of all factors on adoption intent except technology -related self-efficacy (TRSE), enabling the assessment of Saudi T1DM patients for IoT-CGM readiness. Furthermore, the framework's novelty may serve as inspiration for developing comparable frameworks for wearable or attached health monitoring devices in patients with other illnesses and in other geographical locations.

References

  1. K. Al‐Rubeaan et al., “Epidemiology of abnormal glucose metabolism in a country facing its epidemic: <scp>SAUDI‐DM</scp> study,” J. Diabetes, vol. 7, no. 5, Sep. 2015, http://dx.doi.org/10.1111/1753-0407.12224.
  2. M. A. Al Dawish and A. A. Robert, “Diabetes Mellitus in Saudi Arabia: Challenges and possible Solutions,” in Handbook of Healthcare in the Arab World , Cham: Springer Nature Switzerland, 2019, pp. 1–18.
  3. A. Solanas et al., “Smart health: A context-aware health paradigm within smart cities,” IEEE Commun. Mag., vol. 52, no. 8, Aug. 2014, http://dx.doi.org/10.1109/MCOM.2014.6871673.
  4. H. Almansour, N. Beloff, and M. White, “IAI-CGM: A Framework for Intention to Adopt IoT-Enabled Continuous Glucose Monitors,” 2023, pp. 637–660. http://dx.doi.org/10.1007/978-3-031-16072-1_46.
  5. SaudiVision2030, “National Transformation Program Delivery Plan 2018-2020,” Vision 2030, 2019. https://vision2030.gov.sa/sites/default/files/attachments/NTP English Public Document_2810.pdf (accessed May 12, 2021).
  6. M. K. Rhee et al., “Patient adherence improves glycemic control,” Diabetes Educ., vol. 31, no. 2, pp. 240–250, Mar. 2005, http://dx.doi.org/10.1177/0145721705274927.
  7. A. Khan, Z. Al-Abdul Lateef, M. Al Aithan, M. Bu-Khamseen, I. Al Ibrahim, and S. Khan, “Factors contributing to non-compliance among diabetics attending primary health centers in the Al Hasa district of Saudi Arabia,” J. Fam. Community Med., vol. 19, no. 1, p. 26, 2012, http://dx.doi.org/10.4103/2230-8229.94008.
  8. S. L. Norris, J. Lau, S. J. Smith, C. H. Schmid, and M. M. Engelgau, “Self-management education for adults with type 2 diabetes. A meta-analysis of the effect on glycemic control,” Diabetes Care, vol. 25, no. 7, pp. 1159–1171, Jul. 2002, http://dx.doi.org/10.2337/diacare.25.7.1159.
  9. M. Heisler, D. M. Smith, R. A. Hayward, S. L. Krein, and E. A. Kerr, “How well do patients’ assessments of their diabetes self-management correlate with actual glycemic control and receipt of recommended diabetes services?,” Diabetes Care, vol. 26, no. 3, pp. 738–743, Mar. 2003, http://dx.doi.org/10.2337/diacare.26.3.738.
  10. G. C. Williams, H. A. McGregor, A. Zeldman, Z. R. Freedman, and E. L. Deci, “Testing a Self-Determination Theory Process Model for Promoting Glycemic Control Through Diabetes Self-Management,” Heal. Psychol., vol. 23, no. 1, pp. 58–66, Jan. 2004, http://dx.doi.org/10.1037/0278-6133.23.1.58.
  11. D. Olczuk and R. Priefer, “A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews, vol. 12, no. 2. Elsevier Ltd, pp. 181–187, Apr. 01, 2018. http://dx.doi.org/10.1016/j.dsx.2017.09.005.
  12. R. Ajjan, D. Slattery, and E. Wright, “Continuous Glucose Monitoring: A Brief Review for Primary Care Practitioners,” Adv. Ther., vol. 36, no. 3, Mar. 2019, http://dx.doi.org/10.1007/s12325-019-0870-x.
  13. H. S. Chang, S. C. Lee, and Y. G. Ji, “Wearable device adoption model with TAM and TTF,” Int. J. Mob. Commun., vol. 14, no. 5, p. 518, Jan. 2016, http://dx.doi.org/10.1504/IJMC.2016.078726.
  14. Y. J. Kim, K. R. Saviers, T. S. Fisher, and P. P. Irazoqui, “Continuous glucose monitoring with a flexible biosensor and wireless data acquisition system,” Sensors Actuators, B Chem., vol. 275, pp. 237–243, Dec. 2018, http://dx.doi.org/10.1016/j.snb.2018.08.028.
  15. T. N. Gia et al., “IoT-based continuous glucose monitoring system: A feasibility study,” in Procedia Computer Science, Jan. 2017, vol. 109, pp. 327–334. http://dx.doi.org/10.1016/j.procs.2017.05.359.
  16. D. Rodbard, “Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities,” Diabetes Technology and Therapeutics, vol. 18, no. S2. Mary Ann Liebert Inc., pp. S23–S213, Feb. 01, 2016. http://dx.doi.org/10.1089/dia.2015.0417.
  17. M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth, “Machine learning for internet of things data analysis: a survey,” Digital Communications and Networks, vol. 4, no. 3. Chongqing University of Posts and Telecommunications, pp. 161–175, Aug. 01, 2018. http://dx.doi.org/10.1016/j.dcan.2017.10.002.
  18. O. S. Ayanlade, T. O. Oyebisi, and B. A. Kolawole, “Health Information Technology Acceptance Framework for diabetes management,” Heliyon, vol. 5, no. 5, May 2019, http://dx.doi.org/10.1016/j.heliyon.2019.e01735.
  19. N. Davoody, S. Koch, I. Krakau, and M. Hägglund, “Post-discharge stroke patients’ information needs as input to proposing patient-centred eHealth services,” BMC Med. Inform. Decis. Mak., vol. 16, no. 1, pp. 1–13, Jun. 2016, http://dx.doi.org/10.1186/s12911-016-0307-2.
  20. K. Gray and C. Gilbert, “Digital health research methods and tools: Suggestions and selected resources for researchers,” in Intelligent Systems Reference Library, vol. 137, Springer Science and Business Media Deutschland GmbH, 2018, pp. 5–34. http://dx.doi.org/10.1007/978-3-319-67513-8_2.
  21. A. H. Krist, D. E. Nease, G. L. Kreps, L. Overholser, and M. McKenzie, “Engaging Patients in Primary and Specialty Care,” in Oncology Informatics, Elsevier, 2016, pp. 55–79. http://dx.doi.org/10.1016/b978-0-12-802115-6.00004-5.
  22. U. Borges and T. Kubiak, “Continuous Glucose Monitoring in Type 1 Diabetes: Human Factors and Usage,” J. Diabetes Sci. Technol., vol. 10, no. 3, pp. 633–639, May 2016, http://dx.doi.org/10.1177/1932296816634736.
  23. G. Domino and M. L. Domino, Psychological testing: An introduction. Cambridge University Press, 2006.
  24. T. A. Brown, Confirmatory factor analysis for applied research. Guilford publications, 2015.
  25. Z. Awang, A. Afthanorhan, and M. A. M. Asri, “Parametric and non parametric approach in structural equation modeling (SEM): The application of bootstrapping,” Mod. Appl. Sci., vol. 9, no. 9, p. 58, 2015.
  26. J. A. Gliem and R. R. Gliem, “Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales,” 2003.
  27. Hair J F, Black W C, Anderson R E, and Babin B J, Multivariate data analysis: A global perspective, 7th ed. Upper Saddle River NJ: Prentice Hall, 2009.
  28. J. F. Hair Jr, L. M. Matthews, R. L. Matthews, and M. Sarstedt, “PLS-SEM or CB-SEM: updated guidelines on which method to use,” Int. J. Multivar. Data Anal., vol. 1, no. 2, pp. 107–123, 2017.
  29. H. Yildirim and A. M. T. Ali-Eldin, “A model for predicting user intention to use wearable IoT devices at the workplace,” J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 4, pp. 497–505, Oct. 2019, http://dx.doi.org/10.1016/j.jksuci.2018.03.001.
  30. N. Wang, H. Tian, S. Zhu, Y. Li, and L. Yuan, “Analysis of public acceptance of electric vehicle charging scheduling based on the technology acceptance model,” Energy, vol. 258, 2022, http://dx.doi.org/10.1016/j.energy.2022.124804.
  31. M. Tansey et al., “Satisfaction with continuous glucose monitoring in adults and youths with Type1 diabetes,” Diabet. Med., vol. 28, no. 9, pp. 1118–1122, Sep. 2011, http://dx.doi.org/10.1111/j.1464-5491.2011.03368.x.
  32. K. D. Barnard, K. K. Hood, J. Weissberg-Benchell, C. Aldred, N. Oliver, and L. Laffel, Psychosocial Assessment of Artificial Pancreas (AP): Commentary and Review of Existing Measures and Their Applicability in AP Research, vol. 17, no. 4. Mary Ann Liebert Inc., 2015, pp. 295–300. http://dx.doi.org/10.1089/dia.2014.0305.
  33. F. D. Davis and R. P. Bagozzi, “User Acceptance of Computer Technology: A Comparison of Two Theoretical Models,” Manage. Sci., vol. 35, no. 8, pp. 982–1003, 1989.
  34. M. Taylor and A. Taylor, “The technology life cycle: Conceptualization and managerial implications,” Int. J. Prod. Econ., vol. 140, no. 1, pp. 541–553, Nov. 2012, http://dx.doi.org/10.1016/j.ijpe.2012.07.006.