[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Comparing Performance of Machine Learning Libraries across Computing Platforms

, , , , ,

DOI: http://dx.doi.org/10.15439/2023F3594

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 11851189 ()

Full text

Abstract. We have compare the performance of the prediction process of ML models using a standard ML library Scikit-Learn and ONNX.

References

  1. A. Hristoskova, N. González-Deleito, S. Klein, J. Sousa, N. Martins, J. L. Tagaio, Almeida, J. B. Serra, Bulut, C. and Silva, S. Sultanoğlu, J. Ferreira,“An P. M. Initial Santos, Analysis R. Morla, of the Shortcomings of Conventional AI and the Benefits of Distributed AI Approaches in Industrial Use Cases,” in IFIP AIAI 2021 Workshops. Springer International Publishing, 2021, vol. 628, pp. 281–292.
  2. L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs,” https://arxiv.org/abs/1801.06601 [cs], Jan. 2018.
  3. S. Gopinath, N. Ghanathe, V. Seshadri, and R. Sharma, “Compiling KB-sized machine learning models to tiny IoT devices,” in 40th ACM SIGPLAN Conference. Phoenix AZ USA: ACM, Jun. 2019, pp. 79–95.
  4. R.Vinayakumar, M.Alazab, K.Soman, P.Poornachandran, A.Al-Nemrat, and S.Venkatraman, “Deep learning approach for intelligent intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–41 550, 2019.
  5. M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, “Passban IDS: An intelligent anomaly-based intrusion detection system for IoT edge
  6. N. Ferreira, devices,” Schumacher, and IEEE L. IoT Almeida, P. M. Journal, Santos, “One-Class vol. P. 7, F. no. Souto, Models 8, pp. N.for 6882–6897, Martins, Intrusion J. Sousa, Detection Aug. 2020. J. M. at ISP Customer Networks,” in IFIP AIAI 2023, León, Spain, Jun. 2023.
  7. P. M. Santos, J. Sousa, R. Morla, N. Martins, J. Tagaio, J. Serra, C. Silva, M. Sousa, P. Souto, L. L. Ferreira, J. Ferreira, and L. Almeida, “Towards a Distributed Learning Architecture for Securing ISP Home Customers,” in IFIP AIAI 2021 Workshops. Springer International Publishing, 2021, vol. 628, pp. 311–322.
  8. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  9. F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in 2008 IEEE Int’l Conference on Data Mining, Pisa, Italy, Dec. 2008, pp. 413–422.
  10. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying Density-Based Local Outliers.”
  11. B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt, “Support Vector Method for Novelty Detection,” p. 7.
  12. T. Zhang, “Solving large scale linear prediction problems using stochastic gradient descent algorithms,” in 21st Int’l Conference on Machine Learning, 2004, p. 116.
  13. C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape, A. Kumar, S. Goyal, R. Udupa, M. Varma, and P. Jain, “ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices,” in 34th Int’l Conference on Machine Learning, Sydney, Australia, 2017, p. 16.
  14. R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden, “TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems,” https://arxiv.org/abs/2010.08678 [cs], Mar. 2021.
  15. S. Garcia, A. Parmisano, and M. J. Erquiaga, “IoT-23: A labeled dataset with malicious and benign IoT network traffic (Version 1.0.0) [Data set],” Stratosphere Lab., Praha, Czech Republic, Tech. Rep, 2020.
  16. N. Koroniotis, “Designing an effective network forensic framework for the investigation of botnets in the Internet of Things,” Ph.D. dissertation, UNSW Sydney, 2020.