[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 30, 2021

Adaptive model predictive stabilization of an electric cargo bike using a cargo load moment of inertia estimator

Adaptive modellprädiktive Stabilisierung eines Elektrolastenrads mittels Trägheitsmomentenschätzung der Last
  • Suvrath Pai

    M. Sc. Suvrath Pai is a researcher at the Institute of Measurement, Control, and Microtechnology at Ulm University, working towards his PhD degree in the field of stability and control of electric bikes.

    EMAIL logo
    , Benedikt Neuberger

    Benedikt Neuberger is a Masters student at the Institute of Measurement, Control, and Microtechnology at Ulm University, working on his master thesis in the field of cargo bikes stability.

    and Michael Buchholz

    Dr.-Ing. Michael Buchholz is a Research Group Leader and Lecturer („Akademischer Oberrat“) at the Institute of Measurement, Control, and Microtechnology at Ulm University. His main research interests comprise connected and automated driving, system identification and diagnosis, electric mobility, and mechatronical systems.

Abstract

This paper addresses the problem of stabilizing an electric cargo bike. For most control objectives, it suffices to consider a cargo bike as a two-wheeler. However, in addition to the challenges posed to the control of traditional two-wheelers, electric cargo bikes also have the issue of the cargo load, which can significantly influence the driving behaviour. Hence, detection and estimation of the mass, position and inertial properties of the cargo load become important. Here, a Kalman filter based algorithm which estimates these parameters online is presented. For the estimation, measurements of the force exerted by the load are recorded using force sensors installed under the load. Along with these, roll angle and roll acceleration are also measured. The estimated values are then used by an adaptive model predictive controller (MPC) to adjust the model-parameters and stabilize a cargo bike while following a set trajectory.

Zusammenfassung

Dieser Beitrag behandelt die Stabilisierung eines elektrischen Lastenrads. Für die meisten Regelungsaufgaben ist es ausreichend, ein Lastenrad als gewöhnliches Zweirad anzunehmen. Zusätzlich zu den Herausforderungen einer Regelung klassischer Zweiräder sind elektrische Lastenräder jedoch dem Einfluss der Last ausgesetzt, die das Fahrverhalten maßgeblich beeinflussen kann. Daher ist die Berücksichtigung und Schätzung der Masse, Position und Trägheitseigenschaften der Last wichtig. Hierzu wird ein auf einem Kalman-Filter basierender Algorithmus vorgestellt, der diese Parameter online schätzt. Für diese Schätzung werden Kraftmessungen von Sensoren aufgenommen, die unter der Last montiert sind, sowie der Rollwinkel und die Rollwinkelbeschleunigung gemessen. Die Schätzergebnisse werden anschließend in einer adaptiven modellprädiktiven Regelung (MPC) zur Anpassung der Modellparameter verwendet, um ein Lastenrad, welches einer Solltrajektorie folgt, zu stabilisieren.

Award Identifier / Grant number: AZ 3-4332.62-MRM/2

Funding statement: We gratefully acknowledge the funding by the State Ministry of Economic Affairs Baden-Württemberg for this research within the project ZEC-Bike (AZ 3-4332.62-MRM/2).

About the authors

M. Sc. Suvrath Pai

M. Sc. Suvrath Pai is a researcher at the Institute of Measurement, Control, and Microtechnology at Ulm University, working towards his PhD degree in the field of stability and control of electric bikes.

Benedikt Neuberger

Benedikt Neuberger is a Masters student at the Institute of Measurement, Control, and Microtechnology at Ulm University, working on his master thesis in the field of cargo bikes stability.

Dr.-Ing. Michael Buchholz

Dr.-Ing. Michael Buchholz is a Research Group Leader and Lecturer („Akademischer Oberrat“) at the Institute of Measurement, Control, and Microtechnology at Ulm University. His main research interests comprise connected and automated driving, system identification and diagnosis, electric mobility, and mechatronical systems.

References

1. Christos Christoforidis. “Rider control identification in cycling taking into account steer torque feedback and sensorial delays”. MA thesis. TU Delft, 2019. URL: http://resolver.tudelft.nl/uuid:2dbf0e15-a419-4267-ab6c-735409067d1a.Search in Google Scholar

2. Tobias Englert et al.“A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC)”. Optimization and Engineering 20.3 (2019), pp. 769–809.10.1007/s11081-018-9417-2Search in Google Scholar

3. Amelie Ewert et al.“Small and light electric vehicles: an analysis of feasible transport impacts and opportunities for improved urban land use”. Sustainability 12.19 (2020), p. 8098.10.3390/su12198098Search in Google Scholar

4. Neil Holden Getz. “Dynamic inversion of nonlinear maps with applications to nonlinear control and robotics”. PhD thesis. University of California, Berkeley, 1995.Search in Google Scholar

5. JDG Kooijman, AL Schwab and Jason K Moore. “Some observations on human control of a bicycle”. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 49019. 2009, pp. 2021–2028.Search in Google Scholar

6. David JN Limebeer, RS Sharp and S Evangelou. “The stability of motorcycles under acceleration and braking”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 215.9 (2001), pp. 1095–1109.10.1115/DETC2001/VIB-21603Search in Google Scholar

7. Jaap P Meijaard et al.“Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463.2084 (2007), pp. 1955–1982.10.1098/rspa.2007.1857Search in Google Scholar

8. Yukio Miyamaru, Goro Yamasaki and Katsuhito Aoki. “Development of a motorcycle riding simulator”. JSAE Review 23.1 (2002), pp. 121–126.10.1016/S0389-4304(01)00147-3Search in Google Scholar

9. AA Popov, S Rowell and Jacob Philippus Meijaard. “A review on motorcycle and rider modelling for steering control”. Vehicle System Dynamics 48.6 (2010), 775792.10.1080/00423110903033393Search in Google Scholar

10. Gunther Prokop. “Modeling human vehicle driving by model predictive online optimization”. Vehicle System Dynamics 35.1 (2001), pp. 19–53.10.1076/vesd.35.1.19.5614Search in Google Scholar

11. Stuart Rowell. “Modelling the control strategies for riding a motorcycle”. PhD thesis. University of Nottingham, 2007.Search in Google Scholar

12. Robin S Sharp. “Motorcycle steering control by road preview”. Journal of Dynamic Systems, Measurement, and Control (2007), pp. 373–381.10.1115/1.2745842Search in Google Scholar

13. Robin S Sharp. “The stability and control of motorcycles”. Journal of Mechanical Engineering Science 13.5 (1971), pp. 316–329.10.1243/JMES_JOUR_1971_013_051_02Search in Google Scholar

14. Francis John Welsh Whipple. “The stability of the motion of a bicycle”. Quarterly Journal of Pure and Applied Mathematics 30.120 (1899), pp. 312–348.Search in Google Scholar

Received: 2021-02-01
Accepted: 2021-04-26
Published Online: 2021-06-30
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.3.2025 from https://www.degruyter.com/document/doi/10.1515/auto-2021-0032/html
Scroll to top button