[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

POLAR: Adaptive and Non-invasive Join Order Selection via Plans of Least Resistance

Published: 03 May 2024 Publication History

Abstract

Join ordering and query optimization are crucial for query performance but remain challenging due to unknown or changing characteristics of query intermediates, especially for complex queries with many joins. Over the past two decades, a spectrum of techniques for adaptive query processing (AQP)---including inter-/intra-operator adaptivity and tuple routing---have been proposed to address these challenges. However, commercial database systems in practice do not implement holistic AQP techniques because they increase the system complexity (e.g., intertwined planning and execution) and thus, complicate debugging and testing. Additionally, existing approaches may incur large overheads, leading to problematic performance regressions. In this paper, we introduce POLAR, a simple yet very effective technique for a self-regulating selection of alternative join orderings with bounded overhead. We enhance left-deep join pipelines with alternative join orders, perform regret-bounded tuple routing to find and validate "plans of least resistance", and then process the majority of tuple batches through these plans. We study different join order selection techniques, different routing strategies, and a variety of workload characteristics. Our experiments with a POLAR prototype in DuckDB show runtime improvements of up to 9x and less than 7% overhead for all benchmark queries, while outperforming state-of-the-art AQP systems by up to 15x.

References

[1]
Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. 2005. The Design of the Borealis Stream Processing Engine. In CIDR. 277--289. http://cidrdb.org/cidr2005/papers/P23.pdf
[2]
Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. 2003. Aurora: a new model and architecture for data stream management. VLDB J. 12, 2 (2003), 120--139.
[3]
M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, and Jayant R. Haritsa. 2010. On the Stability of Plan Costs and the Costs of Plan Stability. PVLDB 3, 1 (2010), 1137--1148.
[4]
Ashraf Aboulnaga, Peter J. Haas, Sam Lightstone, Guy M. Lohman, Volker Markl, Ivan Popivanov, and Vijayshankar Raman. 2004. Automated Statistics Collection in DB2 UDB. In VLDB.
[5]
Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing. PVLDB 8, 12 (2015), 1792--1803.
[6]
Alexander Alexandrov et al. 2014. The Stratosphere platform for big data analytics. VLDB J. 23, 6 (2014), 939--964.
[7]
Renzo Angles et al. 2020. The LDBC Social Network Benchmark. CoRR abs/2001.02299 (2020). arXiv:2001.02299 http://arxiv.org/abs/2001.02299
[8]
Remzi H. Arpaci-Dusseau. 2003. Run-time adaptation in river. ACM Trans. Comput. Syst. 21, 1 (2003), 36--86.
[9]
Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive Query Processing. In SIGMOD. 261--272.
[10]
Shivnath Babu and Pedro Bizarro. 2005. Adaptive Query Processing in the Looking Glass. In CIDR. 238--249. http://cidrdb.org/cidr2005/papers/P20.pdf
[11]
Shivnath Babu, Pedro Bizarro, and David J. DeWitt. 2005. Proactive Re-optimization. In SIGMOD. 107--118.
[12]
Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer Widom. 2004. Adaptive Ordering of Pipelined Stream Filters. In SIGMOD. 407--418.
[13]
Shivnath Babu and Jennifer Widom. 2004. StreaMon: An Adaptive Engine for Stream Query Processing. In SIGMOD.
[14]
Henriette Behr, Volker Markl, and Zoi Kaoudi. 2023. Learn What Really Matters: A Learning-to-Rank Approach for ML-based Query Optimization. In BTW. 535--554.
[15]
Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer Gemulla. 2007. On synopses for distinct-value estimation under multiset operations. In SIGMOD. 199--210.
[16]
Pedro Bizarro, Shivnath Babu, David J. DeWitt, and Jennifer Widom. 2005. Content-Based Routing: Different Plans for Different Data. In VLDB. http://www.vldb.org/archives/website/2005/program/paper/thu/p757-bizarro.pdf
[17]
Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. 2009. Progressive Parametric Query Optimization. IEEE Trans. Knowl. Data Eng. 21, 4 (2009), 582--594.
[18]
Matthias Boehm. 2011. Cost-based optimization of integration flows. Ph. D. Dissertation. Dresden University of Technology. https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-67936
[19]
Matthias Boehm, Douglas R. Burdick, Alexandre V. Evfimievski, Berthold Reinwald, Frederick R. Reiss, Prithviraj Sen, Shirish Tatikonda, and Yuanyuan Tian. 2014. SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs. IEEE Data Eng. Bull. 37, 3 (2014), 52--62. http://sites.computer.org/debull/A14sept/p52.pdf
[20]
Peter A. Boncz, Angelos-Christos G. Anadiotis, and Steffen Kläbe. 2017. JCC-H: Adding Join Crossing Correlations with Skew to TPC-H. In TPCTC, Raghunath Nambiar and Meikel Poess (Eds.), Vol. 10661. 103--119. http://dblp.uni-trier.de/db/conf/tpctc/tpctc2017.html#BonczAK17
[21]
Renata Borovica-Gajic, Goetz Graefe, and Allison W. Lee. 2017. Robust Performance in Database Query Processing (Dagstuhl Seminar 17222). Dagstuhl Reports 7, 5 (2017), 169--180.
[22]
Renata Borovica-Gajic, Goetz Graefe, Allison W. Lee, Caetano Sauer, and Pinar Tözün. 2022. Database Indexing and Query Processing (Dagstuhl Seminar 22111). Dagstuhl Reports 12, 3 (2022), 82--96.
[23]
Nicolas Bruno and Surajit Chaudhuri. 2002. Exploiting statistics on query expressions for optimization. In SIGMOD. 263--274.
[24]
Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In CIDR. http://www-db.cs.wisc.edu/cidr/cidr2003/program/p24.pdf
[25]
Chung-Min Chen and Nick Roussopoulos. 1994. Adaptive Selectivity Estimation Using Query Feedback. In SIGMOD.
[26]
Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In SIGMOD. 379--390.
[27]
Benoît Dageville et al. 2016. The Snowflake Elastic Data Warehouse. In SIGMOD. ACM, 215--226.
[28]
Amol Deshpande. 2004. An initial study of overheads of eddies. SIGMOD Rec. 33, 1 (2004), 44--49.
[29]
Amol Deshpande, Joseph M. Hellerstein, and Vijayshankar Raman. 2006. Adaptive query processing: why, how, when, what next. In SIGMOD. 806--807.
[30]
Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. 2007. Adaptive Query Processing. Found. Trends Databases 1, 1 (2007), 1--140.
[31]
Bailu Ding, Surajit Chaudhuri, and Vivek R. Narasayya. 2020. Bitvector-aware Query Optimization for Decision Support Queries. In SIGMOD. ACM, 2011--2026.
[32]
Harish Doraiswamy, Pooja N. Darera, and Jayant R. Haritsa. 2007. On the Production of Anorexic Plan Diagrams. In VLDB. 1081--1092. http://www.vldb.org/conf/2007/papers/research/p1081-d.pdf
[33]
Harish Doraiswamy, Pooja N. Darera, and Jayant R. Haritsa. 2008. Identifying robust plans through plan diagram reduction. PVLDB 1, 1 (2008), 1124--1140.
[34]
Anshuman Dutt and Jayant R. Haritsa. 2014. Plan bouquets: query processing without selectivity estimation. In SIGMOD, Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu (Eds.). 1039--1050.
[35]
Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya, and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using Lightweight Models. PVLDB 12, 9 (2019), 1044--1057.
[36]
Tom Ebergen. 2022. Join Order Optimization with (Almost) No Statistics. Master's thesis. https://homepages.cwi.nl/~boncz/msc/2022-TomEbergen.pdf
[37]
Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ramasamy. 2017. Dhalion: Self-Regulating Stream Processing in Heron. PVLDB 10, 12 (2017), 1825--1836.
[38]
Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn N. Paulley. 2012. Robust Query Processing (Dagstuhl Seminar 12321). Dagstuhl Reports 2, 8 (2012), 1--15.
[39]
Philipp M. Grulich, Sebastian Breß, Steffen Zeuch, Jonas Traub, Janis von Bleichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient Stream Processing Through Adaptive Query Compilation. In SIGMOD. 2487--2503.
[40]
Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for Simpler Data Warehouses. In SIGMOD. 1917--1923.
[41]
Immanuel Haffner and Jens Dittrich. 2023. Efficiently Computing Join Orders with Heuristic Search. Proc. ACM Manag. Data 1, 1 (2023), 73:1--73:26.
[42]
Wook-Shin Han, Wooseong Kwak, Jinsoo Lee, Guy M. Lohman, and Volker Markl. 2008. Parallelizing query optimization. PVLDB 1, 1 (2008), 188--200.
[43]
Jayant R. Haritsa. 2010. The Picasso Database Query Optimizer Visualizer. PVLDB 3, 2 (2010), 1517--1520.
[44]
Jayant R. Haritsa. 2020. Robust Query Processing: Mission Possible. PVLDB 13, 12 (2020), 3425--3428.
[45]
Benjamin Hilprecht and Carsten Binnig. 2022. One Model to Rule them All: Towards Zero-Shot Learning for Databases. In CIDR. https://www.cidrdb.org/cidr2022/papers/p16-hilprecht.pdf
[46]
Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction. PVLDB 15, 11 (2022), 2361--2374. https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf
[47]
Urs Hölzle and David M. Ungar. 1994. Optimizing Dynamically-Dispatched Calls with Run-Time Type Feedback. In PLDI. 326--336.
[48]
Fabian Hueske, Mathias Peters, Matthias Sax, Astrid Rheinländer, Rico Bergmann, Aljoscha Krettek, and Kostas Tzoumas. 2012. Opening the Black Boxes in Data Flow Optimization. PVLDB 5, 11 (2012), 1256--1267.
[49]
IBM. 2005. An architectural blueprint for autonomic computing. Whitepaper.
[50]
Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga. 2004. CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies. In SIGMOD. 647--658.
[51]
Yannis E. Ioannidis. 1993. Universality of Serial Histograms. In VLDB. 256--267. http://www.vldb.org/conf/1993/P256.PDF
[52]
Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the Propagation of Errors in the Size of Join Results. In SIGMOD. 268--277.
[53]
Zachary G. Ives, Amol Deshpande, and Vijayshankar Raman. 2007. Adaptive query processing: Why, How, When, and What Next?. In VLDB. 1426--1427. http://www.vldb.org/conf/2007/papers/tutorials/p1426-deshpande.pdf
[54]
Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. 2004. Adapting to Source Properties in Processing Data Integration Queries. In SIGMOD. 395--406.
[55]
Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COMPASS: Online Sketch-based Query Optimization for In-Memory Databases. In SIGMOD. 804--816.
[56]
Vanja Josifovski, Peter M. Schwarz, Laura M. Haas, and Eileen Tien Lin. 2002. Garlic: a new flavor of federated query processing for DB2. In SIGMOD. 524--532.
[57]
Navin Kabra and David J. DeWitt. 1998. Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution Plans. In SIGMOD. 106--117.
[58]
Carl-Christian Kanne and Guido Moerkotte. 2010. Histograms reloaded: the merits of bucket diversity. In SIGMOD. 663--674.
[59]
Manos Karpathiotakis, Miguel Branco, Ioannis Alagiannis, and Anastasia Ailamaki. 2014. Adaptive Query Processing on RAW Data. PVLDB 7, 12 (2014), 1119--1130.
[60]
Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In CIDR. http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
[61]
Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. In SIGMOD. 489--504.
[62]
Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Processing at Scale. In SIGMOD. 239--250.
[63]
Kukjin Lee, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2023. Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL Server. PVLDB 16, 11 (2023), 2871--2883.
[64]
Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB 9, 3 (Nov. 2015), 204--215.
[65]
Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB 9, 3 (2015), 204--215.
[66]
Quanzhong Li, Minglong Shao, Volker Markl, Kevin S. Beyer, Latha S. Colby, and Guy M. Lohman. 2007. Adaptively Reordering Joins during Query Execution. In ICDE. 26--35.
[67]
Guy M. Lohman. 2017. Query Optimization - Are We There Yet?. In BTW. 25--26. https://dl.gi.de/handle/20.500.12116/646
[68]
Ryan Marcus. 2023. Learned Query Superoptimization. CoRR abs/2303.15308 (2023).
[69]
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical. In SIGMOD. 1275--1288.
[70]
Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned Query Optimizer. PVLDB 12, 11 (2019), 1705--1718.
[71]
Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and Hamid Pirahesh. 2004. Robust Query Processing through Progressive Optimization. In SIGMOD. 659--670.
[72]
Guido Moerkotte. 2023. Building Query Compilers. https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf Last Accessed: February 9, 2024.
[73]
Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One New Dynamic Programming Algorithm for the Generation of Optimal Bushy Join Trees without Cross Products. In VLDB. 930--941.
[74]
Guido Moerkotte and Thomas Neumann. 2008. Dynamic programming strikes back. In SIGMOD. 539--552.
[75]
Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with Group-By and Join by Groupjoin. PVLDB 4, 11 (2011), 843--851. http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf
[76]
Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad Plans by Bounding the Impact of Cardinality Estimation Errors. PVLDB 2, 1 (2009), 982--993.
[77]
Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee, Zachary Nado, D. Sculley, Tiark Rompf, and Alexander B. Wiltschko. 2019. AutoGraph: Imperative-style Coding with Graph-based Performance. In MLSys. https://proceedings.mlsys.org/book/272.pdf
[78]
Magnus Müller and Guido Moerkotte. 2022. Translation Grids for Multi-way Join Size Estimation. In EDBT. 2:378--2:382.
[79]
P E O'Neil, E J O'Neil, and X Chen. 2009. The Star Schema Benchmark (SSB). https://cs.umb.edu/~poneil/StarSchemaB.pdf Last Accessed: February 9, 2024.
[80]
Neoklis Polyzotis. 2005. Selectivity-based partitioning: a divide-and-union paradigm for effective query optimization. In CIKM. 720--727.
[81]
Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analytical Database. In SIGMOD. 1981--1984.
[82]
Bogdan Raducanu, Peter A. Boncz, and Marcin Zukowski. 2013. Micro adaptivity in Vectorwise. In SIGMOD. 1231--1242.
[83]
Naveen Reddy and Jayant R. Haritsa. 2005. Analyzing Plan Diagrams of Database Query Optimizers. In VLDB. 1228--1240. http://www.vldb.org/archives/website/2005/program/paper/fri/p1228-reddy.pdf
[84]
Alice Rey, Michael Freitag, and Thomas Neumann. 2023. Seamless Integration of Parquet Files into Data Processing. In BTW. 235--258.
[85]
Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2023. Query Processing on Heterogeneous CPU/GPU Systems. ACM Comput. Surv. 55, 2 (2023), 11:1--11:38.
[86]
Nils L. Schubert, Philipp M. Grulich, Steffen Zeuch, and Volker Markl. 2023. Exploiting Access Pattern Characteristics for Join Reordering. In DaMoN@SIGMOD. 10--18.
[87]
Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database Management System. In SIGMOD. 23--34.
[88]
Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. 2016. Microarchitectural Analysis of In-memory OLTP. In SIGMOD. 387--402.
[89]
Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO - DB2's LEarning Optimizer. In VLDB. 19--28. http://www.vldb.org/conf/2001/P019.pdf
[90]
Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of Postgres. In SIGMOD, Carlo Zaniolo (Ed.). ACM Press, 340--355.
[91]
Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and Michael Stonebraker. 2003. Load Shedding in a Data Stream Manager. In VLDB. 309--320.
[92]
Transaction Processing Council. 1993. TPC Benchmark H (Decision Support). https://www.tpc.org/tpch/ Last Accessed: February 9, 2024.
[93]
Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-Bounded Query Evaluation via Reinforcement Learning. In SIGMOD. 1153--1170.
[94]
Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel Moseley, Saehan Jo, Joseph Antonakakis, and Ankush Rayabhari. 2021. SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning. ACM Trans. Database Syst. 46, 3 (2021), 9:1--9:45.
[95]
Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2010. Sharing-Aware Horizontal Partitioning for Exploiting Correlations During Query Processing. PVLDB 3, 1 (2010), 542--553.
[96]
Li Wang, Tom Z. J. Fu, Richard T. B. Ma, Marianne Winslett, and Zhenjie Zhang. 2019. Elasticutor: Rapid Elasticity for Realtime Stateful Stream Processing. In SIGMOD. 573--588.
[97]
Ziyun Wei and Immanuel Trummer. 2022. SkinnerMT: Parallelizing for Efficiency and Robustness in Adaptive Query Processing on Multicore Platforms. PVLDB 16, 4 (2022), 905--917. https://www.vldb.org/pvldb/vol16/p905-wei.pdf
[98]
Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep Unsupervised Cardinality Estimation. PVLDB 13, 3 (2019), 279--292.
[99]
Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at scale. In SOSP. 423--438.
[100]
Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavriilidis, Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Breß, Jonas Traub, and Volker Markl. 2020. The NebulaStream Platform for Data and Application Management in the Internet of Things. In CIDR. http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
[101]
Steffen Zeuch, Holger Pirk, and Johann-Christoph Freytag. 2016. Non-Invasive Progressive Optimization for In-Memory Databases. PVLDB 9, 14 (2016), 1659--1670.
[102]
Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking Ahead Makes Query Plans Robust. PVLDB 10, 8 (2017), 889--900.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 17, Issue 6
February 2024
369 pages
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 03 May 2024
Published in PVLDB Volume 17, Issue 6

Check for updates

Badges

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 135
    Total Downloads
  • Downloads (Last 12 months)135
  • Downloads (Last 6 weeks)11
Reflects downloads up to 17 Dec 2024

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media