[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Kybernetika 55 no. 2, 402-421, 2019

A swinging up controller for the Furuta pendulum based on the Total Energy Control System approach

H. Rodríguez-CortésDOI: 10.14736/kyb-2019-2-0402

Abstract:

This paper considers the problem of swinging up the Furuta pendulum and proposes a new smooth nonlinear swing up controller based on the concept of energy. This new controller results from the Total Energy Control System (TECS) approach in conjunction with a linearizing feedback controller. The new controller commands to the desired reference the total energy rate of the Furuta pendulum; thus, the Furuta pendulum oscillates and reaches a neighborhood of its unstable configuration while the rotation of its base remains bounded. Once the Furuta pendulum configuration is in the neighborhood of its unstable equilibrium point, a linear controller stabilizes the unstable configuration of the Furuta pendulum. Real-time experiments are included to support the theoretical developments.

Keywords:

total energy control system, Furuta pendulum, swinging up control, real-time experiments

Classification:

93C10, 93C15

References:

  1. C. Aguilar-Avelar and J. Moreno-Valenzuela: New feedback linearization-based control for arm trajectory tracking of the furuta pendulum. IEEE/ASME Trans. Mechatron. 21 (2016), 2, 638-648.   DOI:10.1109/tmech.2015.2485942
  2. D. Angeli: Almost global stabilization of the inverted pendulum via continuous state feedback. Automatica 37 (2001), 7, 1103-1108.   DOI:10.1016/s0005-1098(01)00064-4
  3. J. Aracil, J. A. Acosta and F. Gordillo: A nonlinear hybrid controller for swinging-up and stabilizing the furuta pendulum. Control Engrg. Practice 21 (2013), 8, 989-993.   DOI:10.1016/j.conengprac.2013.04.001
  4. K. J. \AAström and K. Furuta: Swinging up a pendulum by energy control. Automatica 36 (2002), 2, 287-295.   DOI:10.1016/s0005-1098(99)00140-5
  5. A. T. Azar and F. E. Serrano: Adaptive Sliding Mode Control of the Furuta Pendulum. Springer International Publishing, Cham 2015, pp. 1-42.   DOI:10.1007/978-3-319-11173-5\_1
  6. S. P. Bhat and D. S. Bernstein: A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Systems Control Lett. 39 (2000), 1, 63-70.   DOI:10.1016/s0167-6911(99)00090-0
  7. A. M. Bloch, N. E. Leonard and J. E. Marsden: Stabilization of the pendulum on a rotor arm by the method of controlled lagrangians. In: Proc. IEEE International Conference on Robotics and Automation 1999, Vol. 1, IEEE 1999, pp. 500-505.   DOI:10.1109/robot.1999.770026
  8. R. C. Dorf and R. H. Bishop: Modern Control Systems. Pearson, 2011.   CrossRef
  9. T. Gluck, A. Eder and A. Kugi: Swing-up control of a triple pendulum on a cart with experimental validation. Automatica 49 (2013), 3, 801-808.   DOI:10.1016/j.automatica.2012.12.006
  10. F. Gordillo, J. A. Acosta and J. Aracil: A new swing-up law for the furuta pendulum. Int. J. Control 76 (2003), 8, 836-844.   DOI:10.1080/0020717031000116506
  11. K. Graichen, M. Treuer and M. Zeitz: Swing-up of the double pendulum on a cart by feedforward and feedback control with experimental validation. Automatica 43 (2007), 1, 63-71.   DOI:10.1016/j.automatica.2006.07.023
  12. P. X. La Hera, L. B. Freidovich, A. S. Shiriaev and U. Mettin: New approach for swinging up the furuta pendulum: Theory and experiments. Mechatronics 19 (2009), 8, 1240-1250.   DOI:10.1016/j.mechatronics.2009.07.005
  13. T. Horibe and N. Sakamoto: Optimal swing up and stabilization control for inverted pendulum via stable manifold method. IEEE Trans. Control Systems Technol. 26 (2918), 2, 708-715.   DOI:10.1109/tcst.2017.2670524
  14. Quanser Consulting Inc.: Qube servo, 2015. accessed: 2015-06-30.   CrossRef
  15. D. E. Koditschek: The application of total energy as a lyapunov function for mechanical control systems. Contemporary Math. 97 (1989), 131.   DOI:10.1090/conm/097/1021035
  16. A. A. Lambregts: Integrated system design for flight and propulsion control using total energy principles. In: American Institute of Aeronautics and Astronautics, Aircraft Design, Systems and Technology Meeting, Fort Worth 17 (1983).   DOI:10.2514/6.1983-2561
  17. A. A. Lambregts: Vertical flight path and speed control autopilot design using total energy principles. AIAA 83-2239 (1983).   DOI:10.2514/6.1983-2561
  18. J. Lee, R. Mukherjee and H. K. Khalil: Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties. Automatica 54 (2015), 146-157.   DOI:10.1016/j.automatica.2015.01.013
  19. T. Lee, M. Leok and H. McClamroch: Geometric formulations of furuta pendulum control problems. Math. Engrg., Science and Aerospace (MESA) 7 (2016), 1.   CrossRef
  20. R. Lozano, I. Fantoni and D. J. Block: Stabilization of the inverted pendulum around its homoclinic orbit. Systems Control Lett. 40 (2000), 3, 197-204.   DOI:10.1016/s0167-6911(00)00025-6
  21. F. Mazenc and L. Praly: Adding integrations, saturated controls, and stabilization for feedforward systems. IEEE Trans. Automat. Control 41 (1996), 11, 1559-1578.   DOI:10.1109/9.543995
  22. R. Olfati-Saber: Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum. In: Proc. 38th IEEE Conference on Decision and Control 1999, Vol. 2, pp. 1174-1181.   DOI:10.1109/cdc.1999.830086
  23. R. Olfati-Saber: Normal forms for underactuated mechanical systems with symmetry. IEEE Trans. Automat. Control 47 (2002), 2, 305-308.   DOI:10.1109/9.983365
  24. T. Ortega, R. Villafuerte, C. Vázquez and L. Freidovich: Performance without tweaking differentiators via a pr controller: Furuta pendulum case study. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3777-3782.   DOI:10.1109/icra.2016.7487566
  25. L. B. Prasad, B. Tyagi and H. O. Gupta: Optimal control of nonlinear inverted pendulum system using pid controller and lqr: Performance analysis without and with disturbance input. Int. J. Automat. Computing 11 (2014), 6, 661-670.   DOI:10.1007/s11633-014-0818-1
  26. P. Seman, B. Rohal-Ilkiv, M. Salaj and et al.: Swinging up the furuta pendulum and its stabilization via model predictive control. J. Electr. Engrg. 64 (2013), 3, 152-158.   DOI:10.2478/jee-2013-0022
  27. A. S. Shiriaev, L. B. Freidovich, A. Robertsson, R. Johansson and A. Sandberg: Virtual-holonomic-constraints-based design of stable oscillations of furuta pendulum: Theory and experiments. IEEE Trans. Robotics 23 (2007), 4, 827-832.   DOI:10.1109/tro.2007.900597
  28. A. van der Schaft: Port-hamiltonian systems: an introductory survey. In: Proc. International Congress of Mathematicians (M. Sanz-Sole, J. Soria, J.L. Varona, and J. Verdera, eds.), Vol. III: Invited Lectures, Mathematical Society Publishing House, pp. 1339-1365, Madrid 2006.   DOI:10.4171/022-3/65
  29. M. A. Vásquez-Beltrán and H. Rodríguez-Cortés: A total energy control system strategy for the quadrotor helicopter. In: International Conference on Unmanned Aircraft Systems 2015.   DOI:10.1109/icuas.2015.7152302