[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Kybernetika 55 no. 2, 385-401, 2019

A practical solution to implement nonlinear output regulation via dynamic mappings

Carlos Armenta, Jorge Álvarez, Raymundo Márquez and Miguel BernalDOI: 10.14736/kyb-2019-2-0385

Abstract:

This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic calculation of the mappings required for state-feedback regulation has been put forward; following the latter, an error-feedback extension is hereby provided which, when combined with design conditions in the form of linear matrix inequalities, becomes suitable for real-time setups. Real-time results are presented for a nonlinear twin rotor MIMO system. Issues concerning the implementation as well as the solutions adopted, are discussed.

Keywords:

linear matrix inequality, nonlinear output regulation, twin rotor, real-time

Classification:

93C10, 93C95, 93D05

References:

  1. Q. Ahmed, A. I. Bhatti and S. Iqbal: Robust decoupling control design for twin rotor system using Hadamard weights. In: Control Applications, (CCA) and Intelligent Control, (ISIC), 2009 IEEE, pp. 1009-1014.   DOI:10.1109/cca.2009.5281000
  2. M. Bernal, R. Marquez, V. Estrada and B. Castillo: An element-wise linear matrix inequality approach for output regulation problems. In: World Automation Congress (WAC) 2012, Puerto Vallarta 2012, pp. 1-6.   CrossRef
  3. M. Bernal, R. Marquez, V. Estrada-Manzo and B. Castillo-Toledo: Nonlinear output regulation via Takagi-Sugeno fuzzy mappings: A full-information LMI approach. In: IEEE International Conference on Fuzzy Systems 2012, pp. 1-7.   DOI:10.1109/fuzz-ieee.2012.6251202
  4. S. {Boyd}, L. E. Ghaoui, E. Feron and V. Belakrishnan: Linear Matrix Inequalities in System and Control Theory. SIAM, Studies In Applied Mathematics 15, Philadelphia 1994.   DOI:10.1137/1.9781611970777
  5. C. I. Byrnes and A. Isidori: Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation. IEEE Trans. Automat. Control 48 (2003), 10, 1712-1723.   DOI:10.1109/tac.2003.817926
  6. C. I. Byrnes and A. Isidori: Nonlinear internal models for output regulation. IEEE Trans. Automat. Control 49 (2004), 12, 2244-2247.   DOI:10.1109/tac.2004.838492
  7. C. I. Byrnes, F. D. Priscoli and A. Isidori: Output regulation of uncertain nonlinear systems. Springer Science and Business Media, 2012.   DOI:10.1007/978-1-4612-2020-6
  8. E. Davison: The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976), 1, 25-34.   DOI:10.1109/tac.1976.1101137
  9. G. R. Duan and H. H. Yu: LMIs in Control Systems: Analysis, Design and Applications. CRC Press, 2013.   CrossRef
  10. Feedback instruments Ltd and East Sussex. TRMS 33-949S User Manual: Twin Rotor MIMO System Control Experiments, 1998.    CrossRef
  11. B. A. Francis: The linear multivariable regulator problem. SIAM J. Control Optim. 15 (1077), 486-505.   DOI:10.1137/0315033
  12. B. A. Francis and W. M. Wonham: The internal model principle for linear multivariable regulators. J. Appl. Math. Optim. 2 (1975), 170-194.   DOI:10.1007/bf01447855
  13. M. Glauser, Z. Lin and P. E. Allaire: Modeling and control of a partial body weight support system: an output regulation approach. IEEE Trans. Control Systems Technol. 18 (2010), 2, 480-490.   DOI:10.1109/tcst.2009.2016953
  14. J. Henriques, P. Gil, A. Cardoso, P. Carvalho and A. Dourado: Adaptive neural output regulation control of a solar power plant. Control Engrg. Practice 18 (2010), 10, 1183-1196.   DOI:10.1016/j.conengprac.2010.06.001
  15. A. Isidori: Nonlinear Control Systems. Third edition. Springer, London 1995.   DOI:10.1007/978-1-84628-615-5
  16. A. Isidori and C. I. Byrnes: Output regulation of nonlinear systems. {IEEE} Trans. Automat. Control 35 (1990) 2, 131-140.   DOI:10.1109/9.45168
  17. T. N. Jensen, R. Wisniewski, C. DePersis and C. S. Kallesøe: Output regulation of large-scale hydraulic networks with minimal steady state power consumption. Control Engrg. Practice 22 (2014), 103-113.   DOI:10.1016/j.conengprac.2013.10.004
  18. H. Khalil: Nonlinear Systems. Third edition. Prentice Hall, New Jersey 2002.   CrossRef
  19. W. Kim, H. Kim, C. C. Chung and M. Tomizuka: Adaptive output regulation for the rejection of a periodic disturbance with an unknown frequency. IEEE Trans. Control Systems Technol. 19 (2011), 5, 1296-1304.   DOI:10.1109/tcst.2010.2066276
  20. F. L. Lewis, D. M. Dawson and C. T. Abdallah: Robot Manipulator Control: Theory and Practice. CRC Press, 2003.   DOI:10.1201/9780203026953
  21. R. Mahony, I. Mareels, G. Bastin and G. Campion: Static-state feedback laws for output regulation of non-linear systems. Control Engingrg. Practice 4 (1966), 7, 1009-1014.   DOI:10.1016/0967-0661(96)00100-1
  22. L. Marconi and L. Praly: Uniform practical nonlinear output regulation. IEEE Trans. Automat. Control 53 (2008), 5, 1184-1202.   DOI:10.1109/tac.2008.923674
  23. J. A. Meda and B. Castillo: Synchronization of chaotic systems from a fuzzy regulation approach. Fuzzy Sets Systems 160 (2009), 19, 2860-2875.   DOI:10.1016/j.fss.2008.12.006
  24. J. A. Meda, J. C. Gomez and B. Castillo: Exact output regulation for nonlinear systems described by {Takagi}-{Sugeno} fuzzy models. {IEEE} Trans. Fuzzy Systems 20 (2012), 2, 235-247.   CrossRef
  25. F. Nejjari, D. Rotondo, V. Puig and M. Innocenti: LPV modelling and control of a Twin Rotor MIMO system. In: 19th Mediterranean Conference on Control and Automation (MED), IEEE 2011, pp. 1082-1087.   DOI:10.1109/med.2011.5983178
  26. S. K. Pandey and V. Laxmi: Optimal control of twin rotor MIMO system using LQR technique. Comput. Intell. Data Mining 31 (2015), 11-21.   DOI:10.1007/978-81-322-2205-7\_2
  27. A. Pavlov, B. Janssen, N. Van de Wouw and H. Nijmeijer: Experimental Output Regulation for a Nonlinear Benchmark System. IEEE Trans. Control Systems Technol. 15 (2007), 4, 786-793.   DOI:10.1109/tcst.2006.890294
  28. B. Pratap and S. Purwar: Neural network observer for twin rotor mimo system: an lmi based approach. In: The 2010 International Conference on Modelling, Identification and Control (ICMIC), IEEE 2010, pp. 539-544.   CrossRef
  29. R. Robles and M. Bernal: Comments on Exact output regulation for nonlinear systems described by Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Systems 23 (2015), 1, 230-233.   DOI:10.1109/tfuzz.2014.2321773
  30. K. Tanaka and H. O. {Wang}: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001.   DOI:10.1002/0471224596
  31. C.-W. Tao, J.-S. Taur, Y.-H. Chang and C.-W. Chang: A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-input-multi-output system. IEEE Trans. Fuzzy Systems 18 (2010), 5, 893-905.   DOI:10.1109/tfuzz.2010.2051447
  32. A. Tapia, R. Márquez, M. Bernal and J. Cortez: Sliding subspace design based on linear matrix inequalities. Kybernetika 50 (2014), 3, 633-641.   CrossRef
  33. T. J. Tarn, P. Sanposh, D. Cheng and M. Zhang: Output Regulation for Nonlinear Systems: Some Recent Theoretical and Experimental Results. IEEE Trans. Control Systems Technol. 13 (2005), 605-610.   DOI:10.1109/tcst.2004.841674
  34. Y. Umemura and N. Sakamoto: Optimal servo design for lock-up slip control for torque converter nonlinear output regulation approach. IEEE Trans. Control Systems Technol. 23 (2015), 4, 1587-1593.   DOI:10.1109/tcst.2014.2366077
  35. S. Y. Yoon, L. Di and Z. Lin: Unbalance compensation for AMB systems with input delay: An output regulation approach. Control Engrg. Practice 46 (2016), 166-175.   DOI:10.1016/j.conengprac.2015.11.002