[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Kybernetika 54 no. 6, 1167-1183, 2018

Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization

Soňa Kilianová and Daniel ŠevčovičDOI: 10.14736/kyb-2018-6-1167

Abstract:

In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level.

Keywords:

Hamilton-Jacobi-Bellman equation, dynamic stochastic portfolio optimization, Conditional value-at-risk, $CVaRD$-based Sharpe ratio

Classification:

35K55, 34E05, 70H20, 91B70, 90C15, 91B16

References:

  1. R. Abe and N. Ishimura: Existence of solutions for the nonlinear partial differential equation arising in the optimal investment problem. Proc. Japan Acad. Ser. A 84 (2008), 1, 11-14.   DOI:10.3792/pjaa.84.11
  2. V. Agarwal and N. Y. Naik: Risk and portfolio decisions involving hedge funds. Rev. Financ. Stud. 17 (2004), 1, 63-98.   DOI:10.1093/rfs/hhg044
  3. L. Andrieu, M. De Lara and B. Seck: Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions. https://arxiv.org/pdf/0906.3425.pdf   CrossRef
  4. K. J. Arrow: Aspects of the theory of risk bearing. In: The Theory of Risk Aversion. Helsinki: Yrjo Jahnssonin Saatio. (Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, 1971), (1965), pp. 90-109.   CrossRef
  5. J. P. Aubin: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9 (1984), 87-111.   DOI:10.1287/moor.9.1.87
  6. B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer: Non-linear Parametric Optimization. Licensed ed. Birkhauser Verlag, Basel-Boston, Mass., 1983.   DOI:10.1007/978-3-0348-6328-5
  7. D. P. Bertsekas: Dynamic Programming and Stochastic Control. Academic Press, New York 1976.   DOI:10.1016/s0076-5392(08)x6050-3
  8. A. Biglova, S. Ortobelli, S. Rachev and S. Stoyanov: Different Approaches to Risk Estimation in Portfolio Theory. J. Portfolio Management 31 (2004), 1, 103-112.   DOI:10.3905/jpm.2004.443328
  9. S. Browne: Risk-constrained dynamic active portfolio management. Management Sci. 46 (2000), 9, 1188-1199.   DOI:10.1287/mnsc.46.9.1188.12233
  10. M. Denuit, J. Dhaene, M. Goovaerts, R. Kaas and R. Laeven: Risk measurement with equivalent utility principles. Statist. Decisions 24 (2006), 1-25.   DOI:10.1524/stnd.2006.24.1.1
  11. S. Farinelli, M. Ferreira, D. Rosselloc, M. Thoeny and L. Tibiletti: Beyond Sharpe ratio: Optimal asset allocation using different performance ratios. J. Banking Finance 32 (2008), 10, 2057-2063.   DOI:10.1016/j.jbankfin.2007.12.026
  12. Y. Huang, P. A. Forsyth and G. Labahn: Combined fixed point and policy iteration for Hamilton-Jacobi-Bellman equations in finance. SIAM J. Numer. Anal. 50 (2012), 4, 1861-1882.   DOI:10.1137/100812641
  13. N. Ishimura, M. N. Koleva and L. G. Vulkov: Numerical solution via transformation methods of nonlinear models in option pricing. AIP Conference Proceedings 1301 (2010), 1, 387-394.   DOI:10.1063/1.3526637
  14. N. Ishimura and D. Ševčovič: On traveling wave solutions to a Hamilton-Jacobi-Bellman equation with inequality constraints. Japan J. Ind. Appl. Math. 30 (2013), 1, 51-67.   DOI:10.1007/s13160-012-0087-8
  15. I. Karatzas, J. P. Lehoczky, S. P. Sethi and S. Shreve: Explicit solution of a general consumption/investment problem. Math. Oper. Res. 11 (1986), 2, 261-294.   DOI:10.1287/moor.11.2.261
  16. S. Kilianová and D. Ševčovič: A transformation method for solving the Hamilton-Jacobi-Bellman equation for a constrained dynamic stochastic optimal allocation problem. ANZIAM J. 55 (2013), 14-38.   DOI:10.21914/anziamj.v55i0.6816
  17. S. Kilianová and M. Trnovská: Robust portfolio optimization via solution to the Hamilton-Jacobi-Bellman equation. Int. J. Comput. Math. 93 (2016), 725-734.   DOI:10.1080/00207160.2013.871542
  18. D. Klatte: On the {L}ipschitz behavior of optimal solutions in parametric problems of quadratic optimization and linear complementarity. Optim. J. Math. Program. Oper. Res. 16 (1985), 6, 819-831.   DOI:10.1080/02331938508843080
  19. M. N. Koleva: Iterative methods for solving nonlinear parabolic problem in pension saving management. AIP Confer. Proc. 1404 (2011), 1, 457-463.   DOI:10.1063/1.3659948
  20. M. N. Koleva and L. Vulkov: Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance. Math. Comput. Modell. 57 (2013), 2564-2575.   DOI:10.1016/j.mcm.2013.01.008
  21. P. Kútik and K. Mikula: Finite volume schemes for solving nonlinear partial differential equations in financial mathematics. In: Finite Volumes for Complex Applications VI, Problems and Perspectives (J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, eds.), Springer Proc. Math. 4 (2011), pp. 643-651.   DOI:10.1007/978-3-642-20671-9\_68
  22. R. J. LeVeque: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge 2002.   DOI:10.1017/cbo9780511791253
  23. S. Lin and M. Ohnishi: Optimal portfolio selection by CVaR based Sharpe ratio genetic algorithm approach. Sci. Math. Japon. Online e-2006 (2006), 1229-1251.   CrossRef
  24. Z. Macová and D. Ševčovič: Weakly nonlinear analysis of the {H}amilton-{J}acobi-{B}ellman equation arising from pension savings management. Int. J. Numer. Anal. Model. 7 (2010), 4, 619-638.   CrossRef
  25. A. J. McNeil, R. Frey and P. Embrechts: Quantitattive Risk Management. Princeton Series in Finance, Princeton University Press, 2005.   DOI:10.1007/s11408-006-0016-4
  26. R. C. Merton: Optimal consumption and portfolio rules in a continuous time model. J. Economic Theory 71 (1971), 373-413.   DOI:10.1016/0022-0531(71)90038-x
  27. P. Milgrom and I. Segal: Envelope theorems for arbitrary choice sets. Econometrica 70 (2002), 2, 583-601.   DOI:10.1111/1468-0262.00296
  28. M. Musiela and T. Zariphopoulou: An example of indifference prices under exponential preferences. Finance Stochast. 8 (2004), 2, 229-239.   DOI:10.1007/s00780-003-0112-5
  29. K. Muthuraman and S. Kumar: Multidimensional portfolio optimization with proportional transaction costs. Math. Finance 16 (2006), 2, 301-335.   DOI:10.1111/j.1467-9965.2006.00273.x
  30. G. Ch. Pflug and W. Römisch: Modeling, Measuring and Managing Risk. World Scientific Publushing, 2007.   DOI:10.1142/6478
  31. T. Post, Y. Fang and M. Kopa: Linear tests for DARA stochastic dominance. Management Sci. 61 (2015), 1615-1629.   DOI:10.1287/mnsc.2014.1960
  32. J. W. Pratt: Risk aversion in the small and in the large. Econometrica. 32 (1964), 1-2, 122-136.   DOI:10.2307/1913738
  33. M. H. Protter and H. F. Weinberger: Maximum Principles in Differential Equations. Springer-Verlag, New York 1984.   DOI:10.1007/978-1-4612-5282-5
  34. C. Reisinger and J. H. Witte: On the use of policy iteration as an easy way of pricing {A}merican options. SIAM J. Financ. Math. 3 (2012), 459-478.   DOI:10.1137/110823328
  35. B. Seck, L. Andrieu and M. De Lara: Parametric multi-attribute utility functions for optimal profit under risk constraints. Theory Decision. 72 (2012), 2, 257-271.   DOI:10.1007/s11238-011-9255-6
  36. W. F. Sharpe: The Sharpe ratio. J. Portfolio Management 21 (1994), 1, 49-58.   DOI:10.3905/jpm.1994.409501
  37. D. Ševčovič, B. Stehlíková and K. Mikula: Analytical and Numerical Methods for Pricing Financial Derivatives. Nova Science Publishers, Inc., Hauppauge 2011.   CrossRef
  38. A. Tourin and T. Zariphopoulou: Numerical schemes for investment models with singular transactions. Comput. Econ. 7 (1994), 4, 287-307.   DOI:10.1007/bf01299457
  39. R. G. Vickson: Stochastic dominance for decreasing absolute risk aversion. J. Financial Quantitative Analysis 10 (1975), 799-811.   DOI:10.2307/2330272
  40. A. Wiesinger: Risk-Adjusted Performance Measurement State of the Art. Bachelor Thesis of the University of St. Gallen School of Business Administration, Economics, Law and Social Sciences (HSG), 2010.   CrossRef
  41. J. Xia: Risk aversion and portfolio selection in a continuous-time model. J. Control Optim. 49 (2011), 5, 1916-1937.   DOI:10.1137/10080871x
  42. T. Zariphopoulou: Consumption-investment models with constraints. SIAM J. Control Optim. 32 (1994), 1, 59-85.   DOI:10.1137/s0363012991218827
  43. H. Zheng: Efficient frontier of utility and CVaR. Math. Meth. Oper. Res. 70 (2009), 1, 129-148.   DOI:10.1007/s00186-008-0234-9