[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Kybernetika 53 no. 1, 113-128, 2017

Selection and correction of weighted rules based on \L ukasiewicz's fuzzy logic with evaluated syntax

Jiří IvánekDOI: 10.14736/kyb-2017-1-0113

Abstract:

The core of the expert knowledge is typically represented by a set of rules (implications) assigned with weights specifying their (un)certainties. In the paper, a method for hierarchical selection and correction of expert's weighted rules is described particularly in the case when Łukasiewicz's fuzzy logic with evaluated syntax for dealing with weights is used.

Keywords:

fuzzy implication, uncertain knowledge, rule base, Łukasiewicz's fuzzy logic with evaluated syntax, composition function

Classification:

28E10, 28E99

References:

  1. P. Berka: Learning compositional decision rules using the KEX algorithm. Intelligent Data Analysis 16 (2012), 665-681.   CrossRef
  2. P. Berka and J. Ivánek: Automated knowledge acquisition for PROSPECTOR-like expert systems. In: Machine Learning: ECML-94 (F. Bergadano and L. D. Raedt, eds.), Springer Verlag 1994, pp. 339-342.   DOI:10.1007/3-540-57868-4_68
  3. P. Hájek: Combining functions for certainty factors in consulting systems. Int. J. Man-Machine Studies 22 (1985), 59-76.   DOI:10.1016/s0020-7373(85)80077-8
  4. P. Hájek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht 1998.   DOI:10.1007/978-94-011-5300-3
  5. P. Hájek, T. Havránek and R. Jiroušek: Uncertain Information Processing in Expert Systems    CrossRef
  6. J. Ivánek: Representation of expert knowledge as a fuzzy axiomatical theory. Int. J. General Systems 20 (1991), 55-58.   DOI:10.1080/03081079108945013
  7. J. Ivánek and B. Stejskal: Automatic acquisition of knowledge base from data without expert: ESOD (Expert System from Observational Data). In: Proc. COMPSTAT'88 Copenhagen, Physica-Verlag, Heidelberg 1988, pp. 175-180.   DOI:10.1007/978-3-642-46900-8_23
  8. J. Ivánek, J. Švenda and J. Ferjenčík: Inference in expert systems based on complete multivalued logic. Kybernetika 25 (1989), 25-32.   DOI:10.1109/64.193052
  9. V. Novák: Fuzzy Logic with Evaluated Syntax. In: Handbook of Mathematical Fuzzy Logic (P. Cintula, C. G. Fermuller, C. and Noguera, eds.), volume 3, College Publications, London 2015, pp. 1063-1104.   CrossRef
  10. V. Novák, I. Perfilieva and J. Močkoř: Mathematical Principles of Fuzzy Logic. Kluwer, Boston 1999.   DOI:10.1007/978-1-4615-5217-8
  11. J. Pavelka: On fuzzy logic I, II, III. Zeischr. f. Math. Logik und Grundl. der Math. 25 (1979), 45-52, 119-134, 447-464.   DOI:10.1002/malq.19790252510