[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

v8/
support.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
use std::any::type_name;
use std::any::Any;
use std::borrow::Borrow;
use std::borrow::BorrowMut;
use std::convert::identity;
use std::convert::AsMut;
use std::convert::AsRef;
use std::convert::TryFrom;
use std::fmt::{self, Debug, Formatter};
use std::marker::PhantomData;
use std::mem::align_of;
use std::mem::forget;
use std::mem::needs_drop;
use std::mem::size_of;
use std::mem::take;
use std::mem::transmute_copy;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ptr::drop_in_place;
use std::ptr::null_mut;
use std::ptr::NonNull;
use std::rc::Rc;
use std::sync::Arc;
use std::thread::yield_now;
use std::time::Duration;
use std::time::Instant;

// TODO use libc::intptr_t when stable.
// https://doc.rust-lang.org/1.7.0/libc/type.intptr_t.html
#[allow(non_camel_case_types)]
pub type intptr_t = isize;

// TODO use libc::size_t when stable.
// https://doc.rust-lang.org/1.7.0/libc/type.size_t.html
#[allow(non_camel_case_types)]
pub type size_t = usize;

pub use std::os::raw::c_char as char;
pub use std::os::raw::c_int as int;
pub use std::os::raw::c_long as long;

pub type Opaque = [u8; 0];

/// Pointer to object allocated on the C++ heap. The pointer may be null.
#[repr(transparent)]
#[derive(Debug)]
pub struct UniquePtr<T: ?Sized>(Option<UniqueRef<T>>);

impl<T: ?Sized> UniquePtr<T> {
  pub fn is_null(&self) -> bool {
    self.0.is_none()
  }

  pub fn as_ref(&self) -> Option<&UniqueRef<T>> {
    self.0.as_ref()
  }

  pub fn as_mut(&mut self) -> Option<&mut UniqueRef<T>> {
    self.0.as_mut()
  }

  pub fn take(&mut self) -> Option<UniqueRef<T>> {
    take(&mut self.0)
  }

  pub fn unwrap(self) -> UniqueRef<T> {
    self.0.unwrap()
  }
}

impl<T> UniquePtr<T> {
  pub unsafe fn from_raw(ptr: *mut T) -> Self {
    assert_unique_ptr_layout_compatible::<Self, T>();
    Self(UniqueRef::try_from_raw(ptr))
  }

  pub fn into_raw(self) -> *mut T {
    self
      .0
      .map(|unique_ref| unique_ref.into_raw())
      .unwrap_or_else(null_mut)
  }
}

impl<T: Shared> UniquePtr<T> {
  pub fn make_shared(self) -> SharedPtr<T> {
    self.into()
  }
}

impl<T> Default for UniquePtr<T> {
  fn default() -> Self {
    assert_unique_ptr_layout_compatible::<Self, T>();
    Self(None)
  }
}

impl<T> From<UniqueRef<T>> for UniquePtr<T> {
  fn from(unique_ref: UniqueRef<T>) -> Self {
    assert_unique_ptr_layout_compatible::<Self, T>();
    Self(Some(unique_ref))
  }
}

/// Pointer to object allocated on the C++ heap. The pointer may not be null.
#[repr(transparent)]
#[derive(Debug)]
pub struct UniqueRef<T: ?Sized>(NonNull<T>);

impl<T> UniqueRef<T> {
  pub(crate) unsafe fn try_from_raw(ptr: *mut T) -> Option<Self> {
    assert_unique_ptr_layout_compatible::<Self, T>();
    NonNull::new(ptr).map(Self)
  }

  pub(crate) unsafe fn from_raw(ptr: *mut T) -> Self {
    assert_unique_ptr_layout_compatible::<Self, T>();
    Self::try_from_raw(ptr).unwrap()
  }

  pub fn into_raw(self) -> *mut T {
    let ptr = self.0.as_ptr();
    forget(self);
    ptr
  }
}

impl<T: Shared> UniqueRef<T> {
  pub fn make_shared(self) -> SharedRef<T> {
    self.into()
  }
}

impl<T: ?Sized> Drop for UniqueRef<T> {
  fn drop(&mut self) {
    unsafe { drop_in_place(self.0.as_ptr()) }
  }
}

impl<T: ?Sized> Deref for UniqueRef<T> {
  type Target = T;
  fn deref(&self) -> &Self::Target {
    unsafe { self.0.as_ref() }
  }
}

impl<T: ?Sized> DerefMut for UniqueRef<T> {
  fn deref_mut(&mut self) -> &mut Self::Target {
    unsafe { self.0.as_mut() }
  }
}

impl<T: ?Sized> AsRef<T> for UniqueRef<T> {
  fn as_ref(&self) -> &T {
    self
  }
}

impl<T: ?Sized> AsMut<T> for UniqueRef<T> {
  fn as_mut(&mut self) -> &mut T {
    self
  }
}

impl<T: ?Sized> Borrow<T> for UniqueRef<T> {
  fn borrow(&self) -> &T {
    self
  }
}

impl<T: ?Sized> BorrowMut<T> for UniqueRef<T> {
  fn borrow_mut(&mut self) -> &mut T {
    self
  }
}

fn assert_unique_ptr_layout_compatible<U, T>() {
  // Assert that `U` (a `UniqueRef` or `UniquePtr`) has the same memory layout
  // as a raw C pointer.
  assert_eq!(size_of::<U>(), size_of::<*mut T>());
  assert_eq!(align_of::<U>(), align_of::<*mut T>());

  // Assert that `T` (probably) implements `Drop`. If it doesn't, a regular
  // reference should be used instead of UniquePtr/UniqueRef.
  assert!(needs_drop::<T>());
}

pub trait Shared
where
  Self: Sized,
{
  fn clone(shared_ptr: &SharedPtrBase<Self>) -> SharedPtrBase<Self>;
  fn from_unique_ptr(unique_ptr: UniquePtr<Self>) -> SharedPtrBase<Self>;
  fn get(shared_ptr: &SharedPtrBase<Self>) -> *const Self;
  fn reset(shared_ptr: &mut SharedPtrBase<Self>);
  fn use_count(shared_ptr: &SharedPtrBase<Self>) -> long;
}

/// Private base type which is shared by the `SharedPtr` and `SharedRef`
/// implementations.
#[repr(C)]
#[derive(Eq, Debug, PartialEq)]
pub struct SharedPtrBase<T: Shared>([usize; 2], PhantomData<T>);

unsafe impl<T: Shared + Sync> Send for SharedPtrBase<T> {}
unsafe impl<T: Shared + Sync> Sync for SharedPtrBase<T> {}

impl<T: Shared> Default for SharedPtrBase<T> {
  fn default() -> Self {
    Self([0usize; 2], PhantomData)
  }
}

impl<T: Shared> Drop for SharedPtrBase<T> {
  fn drop(&mut self) {
    <T as Shared>::reset(self);
  }
}

/// Wrapper around a C++ shared_ptr. A shared_ptr may be be null.
#[repr(C)]
#[derive(Debug)]
pub struct SharedPtr<T: Shared>(SharedPtrBase<T>);

impl<T: Shared> SharedPtr<T> {
  /// Asserts that the number of references to the shared inner value is equal
  /// to the `expected` count.
  ///
  /// This function relies on the C++ method `std::shared_ptr::use_count()`,
  /// which usually performs a relaxed load. This function will repeatedly call
  /// `use_count()` until it returns the expected value, for up to one second.
  /// Therefore it should probably not be used in performance critical code.
  #[track_caller]
  pub fn assert_use_count_eq(&self, expected: usize) {
    assert_shared_ptr_use_count_eq("SharedPtr", &self.0, expected);
  }

  pub fn is_null(&self) -> bool {
    <T as Shared>::get(&self.0).is_null()
  }

  pub fn take(&mut self) -> Option<SharedRef<T>> {
    if self.is_null() {
      None
    } else {
      let base = take(&mut self.0);
      Some(SharedRef(base))
    }
  }

  pub fn unwrap(self) -> SharedRef<T> {
    assert!(!self.is_null());
    SharedRef(self.0)
  }
}

impl<T: Shared> Clone for SharedPtr<T> {
  fn clone(&self) -> Self {
    Self(<T as Shared>::clone(&self.0))
  }
}

impl<T: Shared> Default for SharedPtr<T> {
  fn default() -> Self {
    Self(Default::default())
  }
}

impl<T, U> From<U> for SharedPtr<T>
where
  T: Shared,
  U: Into<UniquePtr<T>>,
{
  fn from(unique_ptr: U) -> Self {
    let unique_ptr = unique_ptr.into();
    Self(<T as Shared>::from_unique_ptr(unique_ptr))
  }
}

impl<T: Shared> From<SharedRef<T>> for SharedPtr<T> {
  fn from(mut shared_ref: SharedRef<T>) -> Self {
    Self(take(&mut shared_ref.0))
  }
}

/// Wrapper around a C++ shared_ptr. The shared_ptr is assumed to contain a
/// value and may not be null.
#[repr(C)]
#[derive(Debug)]
pub struct SharedRef<T: Shared>(SharedPtrBase<T>);

impl<T: Shared> SharedRef<T> {
  /// Asserts that the number of references to the shared inner value is equal
  /// to the `expected` count.
  ///
  /// This function relies on the C++ method `std::shared_ptr::use_count()`,
  /// which usually performs a relaxed load. This function will repeatedly call
  /// `use_count()` until it returns the expected value, for up to one second.
  /// Therefore it should probably not be used in performance critical code.
  #[track_caller]
  pub fn assert_use_count_eq(&self, expected: usize) {
    assert_shared_ptr_use_count_eq("SharedRef", &self.0, expected);
  }
}

impl<T: Shared> Clone for SharedRef<T> {
  fn clone(&self) -> Self {
    Self(<T as Shared>::clone(&self.0))
  }
}

impl<T: Shared> From<UniqueRef<T>> for SharedRef<T> {
  fn from(unique_ref: UniqueRef<T>) -> Self {
    SharedPtr::from(unique_ref).unwrap()
  }
}

impl<T: Shared> Deref for SharedRef<T> {
  type Target = T;
  fn deref(&self) -> &Self::Target {
    unsafe { &*(<T as Shared>::get(&self.0)) }
  }
}

impl<T: Shared> AsRef<T> for SharedRef<T> {
  fn as_ref(&self) -> &T {
    self
  }
}

impl<T: Shared> Borrow<T> for SharedRef<T> {
  fn borrow(&self) -> &T {
    self
  }
}

#[track_caller]
fn assert_shared_ptr_use_count_eq<T: Shared>(
  wrapper_type_name: &str,
  shared_ptr: &SharedPtrBase<T>,
  expected: usize,
) {
  let mut actual = T::use_count(shared_ptr);
  let ok = match long::try_from(expected) {
    Err(_) => false, // Non-`long` value can never match actual use count.
    Ok(expected) if actual == expected => true, // Fast path.
    Ok(expected) => {
      pub const RETRY_TIMEOUT: Duration = Duration::from_secs(1);
      let start = Instant::now();
      loop {
        yield_now();
        actual = T::use_count(shared_ptr);
        if actual == expected {
          break true;
        } else if start.elapsed() > RETRY_TIMEOUT {
          break false;
        }
      }
    }
  };
  assert!(
    ok,
    "assertion failed: `{}<{}>` reference count does not match expectation\
       \n   actual: {}\
       \n expected: {}",
    wrapper_type_name,
    type_name::<T>(),
    actual,
    expected
  );
}

/// A trait for values with static lifetimes that are allocated at a fixed
/// address in memory. Practically speaking, that means they're either a
/// `&'static` reference, or they're heap-allocated in a `Arc`, `Box`, `Rc`,
/// `UniqueRef`, `SharedRef` or `Vec`.
pub trait Allocated<T: ?Sized>:
  Deref<Target = T> + Borrow<T> + 'static
{
}
impl<A, T: ?Sized> Allocated<T> for A where
  A: Deref<Target = T> + Borrow<T> + 'static
{
}

pub(crate) enum Allocation<T: ?Sized + 'static> {
  Static(&'static T),
  Arc(Arc<T>),
  Box(Box<T>),
  Rc(Rc<T>),
  UniqueRef(UniqueRef<T>),
  Other(Box<dyn Borrow<T> + 'static>),
  // Note: it would be nice to add `SharedRef` to this list, but it
  // requires the `T: Shared` bound, and it's unfortunately not possible
  // to set bounds on individual enum variants.
}

impl<T: ?Sized + 'static> Allocation<T> {
  unsafe fn transmute_wrap<Abstract, Concrete>(
    value: Abstract,
    wrap: fn(Concrete) -> Self,
  ) -> Self {
    assert_eq!(size_of::<Abstract>(), size_of::<Concrete>());
    let wrapped = wrap(transmute_copy(&value));
    forget(value);
    wrapped
  }

  fn try_wrap<Abstract: 'static, Concrete: 'static>(
    value: Abstract,
    wrap: fn(Concrete) -> Self,
  ) -> Result<Self, Abstract> {
    if <dyn Any>::is::<Concrete>(&value) {
      Ok(unsafe { Self::transmute_wrap(value, wrap) })
    } else {
      Err(value)
    }
  }

  pub fn of<Abstract: Deref<Target = T> + Borrow<T> + 'static>(
    a: Abstract,
  ) -> Self {
    Self::try_wrap(a, identity)
      .or_else(|a| Self::try_wrap(a, Self::Static))
      .or_else(|a| Self::try_wrap(a, Self::Arc))
      .or_else(|a| Self::try_wrap(a, Self::Box))
      .or_else(|a| Self::try_wrap(a, Self::Rc))
      .or_else(|a| Self::try_wrap(a, Self::UniqueRef))
      .unwrap_or_else(|a| Self::Other(Box::from(a)))
  }
}

impl<T: Debug + ?Sized> Debug for Allocation<T> {
  fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
    match self {
      Allocation::Arc(r) => f.debug_tuple("Arc").field(&r).finish(),
      Allocation::Box(b) => f.debug_tuple("Box").field(&b).finish(),
      Allocation::Other(_) => f.debug_tuple("Other").finish(),
      Allocation::Rc(r) => f.debug_tuple("Rc").field(&r).finish(),
      Allocation::Static(s) => f.debug_tuple("Static").field(&s).finish(),
      Allocation::UniqueRef(u) => f.debug_tuple("UniqueRef").field(&u).finish(),
    }
  }
}

impl<T: ?Sized> Deref for Allocation<T> {
  type Target = T;
  fn deref(&self) -> &Self::Target {
    match self {
      Self::Static(v) => v.borrow(),
      Self::Arc(v) => v.borrow(),
      Self::Box(v) => v.borrow(),
      Self::Rc(v) => v.borrow(),
      Self::UniqueRef(v) => v.borrow(),
      Self::Other(v) => (**v).borrow(),
    }
  }
}

impl<T: ?Sized> AsRef<T> for Allocation<T> {
  fn as_ref(&self) -> &T {
    self
  }
}

impl<T: ?Sized> Borrow<T> for Allocation<T> {
  fn borrow(&self) -> &T {
    self
  }
}

#[repr(C)]
#[derive(Debug, PartialEq, Eq)]
pub enum MaybeBool {
  JustFalse = 0,
  JustTrue = 1,
  Nothing = 2,
}

impl From<MaybeBool> for Option<bool> {
  fn from(b: MaybeBool) -> Self {
    match b {
      MaybeBool::JustFalse => Some(false),
      MaybeBool::JustTrue => Some(true),
      MaybeBool::Nothing => None,
    }
  }
}

impl From<Option<bool>> for MaybeBool {
  fn from(option: Option<bool>) -> Self {
    match option {
      Some(false) => MaybeBool::JustFalse,
      Some(true) => MaybeBool::JustTrue,
      None => MaybeBool::Nothing,
    }
  }
}

#[derive(Copy, Clone, Debug)]
#[repr(transparent)]
pub struct CxxVTable(pub *const Opaque);

#[allow(unused)]
#[derive(Copy, Clone, Debug)]
pub struct RustVTable<DynT>(pub *const Opaque, pub PhantomData<DynT>);

#[derive(Debug)]
pub struct FieldOffset<F>(usize, PhantomData<F>);

unsafe impl<F> Send for FieldOffset<F> where F: Send {}
unsafe impl<F> Sync for FieldOffset<F> where F: Sync {}

impl<F> Copy for FieldOffset<F> {}

impl<F> Clone for FieldOffset<F> {
  fn clone(&self) -> Self {
    *self
  }
}

impl<F> FieldOffset<F> {
  pub fn from_ptrs<E>(embedder_ptr: *const E, field_ptr: *const F) -> Self {
    let embedder_addr = embedder_ptr as usize;
    let field_addr = field_ptr as usize;
    assert!(field_addr >= embedder_addr);
    assert!((field_addr + size_of::<F>()) <= (embedder_addr + size_of::<E>()));
    Self(field_addr - embedder_addr, PhantomData)
  }

  #[allow(clippy::wrong_self_convention)]
  pub unsafe fn to_embedder<E>(self, field: &F) -> &E {
    (((field as *const _ as usize) - self.0) as *const E)
      .as_ref()
      .unwrap()
  }

  #[allow(clippy::wrong_self_convention)]
  pub unsafe fn to_embedder_mut<E>(self, field: &mut F) -> &mut E {
    (((field as *mut _ as usize) - self.0) as *mut E)
      .as_mut()
      .unwrap()
  }
}

#[repr(C)]
#[derive(Debug, Default)]
pub struct Maybe<T> {
  has_value: bool,
  value: T,
}

impl<T> From<Maybe<T>> for Option<T> {
  fn from(maybe: Maybe<T>) -> Self {
    if maybe.has_value {
      Some(maybe.value)
    } else {
      None
    }
  }
}

pub trait UnitType
where
  Self: Copy + Sized,
{
  #[inline(always)]
  fn get() -> Self {
    UnitValue::<Self>::get()
  }
}

impl<T> UnitType for T where T: Copy + Sized {}

#[derive(Copy, Clone, Debug)]
struct UnitValue<T>(PhantomData<T>)
where
  Self: Sized;

impl<T> UnitValue<T>
where
  Self: Copy + Sized,
{
  const SELF: Self = Self::new_checked();

  const fn new_checked() -> Self {
    // Statically assert that T is indeed a unit type.
    let size_must_be_0 = size_of::<T>();
    let s = Self(PhantomData::<T>);
    [s][size_must_be_0]
  }

  #[inline(always)]
  fn get_checked(self) -> T {
    // This run-time check serves just as a backup for the compile-time
    // check when Self::SELF is initialized.
    assert_eq!(size_of::<T>(), 0);
    unsafe { std::mem::MaybeUninit::<T>::zeroed().assume_init() }
  }

  #[inline(always)]
  pub fn get() -> T {
    // Accessing the Self::SELF is necessary to make the compile-time type check
    // work.
    Self::SELF.get_checked()
  }
}

#[derive(Debug)]
pub struct DefaultTag;

#[derive(Debug)]
pub struct IdenticalConversionTag;

pub trait MapFnFrom<F, Tag = DefaultTag>
where
  F: UnitType,
  Self: Sized,
{
  fn mapping() -> Self;

  #[inline(always)]
  fn map_fn_from(_: F) -> Self {
    Self::mapping()
  }
}

impl<F> MapFnFrom<F, IdenticalConversionTag> for F
where
  Self: UnitType,
{
  #[inline(always)]
  fn mapping() -> Self {
    Self::get()
  }
}

pub trait MapFnTo<T, Tag = DefaultTag>
where
  Self: UnitType,
  T: Sized,
{
  fn mapping() -> T;

  #[inline(always)]
  fn map_fn_to(self) -> T {
    Self::mapping()
  }
}

impl<F, T, Tag> MapFnTo<T, Tag> for F
where
  Self: UnitType,
  T: MapFnFrom<F, Tag>,
{
  #[inline(always)]
  fn mapping() -> T {
    T::map_fn_from(F::get())
  }
}

pub trait CFnFrom<F>
where
  Self: Sized,
  F: UnitType,
{
  fn mapping() -> Self;

  #[inline(always)]
  fn c_fn_from(_: F) -> Self {
    Self::mapping()
  }
}

macro_rules! impl_c_fn_from {
  ($($arg:ident: $ty:ident),*) => {
    impl<F, R, $($ty),*> CFnFrom<F> for extern "C" fn($($ty),*) -> R
    where
      F: UnitType + Fn($($ty),*) -> R,
    {
      #[inline(always)]
      fn mapping() -> Self {
        extern "C" fn c_fn<F, R, $($ty),*>($($arg: $ty),*) -> R
        where
          F: UnitType + Fn($($ty),*) -> R,
        {
          (F::get())($($arg),*)
        }
        c_fn::<F, R, $($ty),*>
      }
    }
  };
}

impl_c_fn_from!();
impl_c_fn_from!(a0: A0);
impl_c_fn_from!(a0: A0, a1: A1);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4, a5: A5);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4, a5: A5, a6: A6);

pub trait ToCFn<T>
where
  Self: UnitType,
  T: Sized,
{
  fn mapping() -> T;

  #[inline(always)]
  fn to_c_fn(self) -> T {
    Self::mapping()
  }
}

impl<F, T> ToCFn<T> for F
where
  Self: UnitType,
  T: CFnFrom<F>,
{
  #[inline(always)]
  fn mapping() -> T {
    T::c_fn_from(F::get())
  }
}

#[cfg(test)]
mod tests {
  use super::*;
  use std::ptr::null;
  use std::sync::atomic::AtomicBool;
  use std::sync::atomic::Ordering;

  #[derive(Eq, PartialEq)]
  struct MockSharedObj {
    pub inner: u32,
  }

  impl MockSharedObj {
    const INSTANCE_A: Self = Self { inner: 11111 };
    const INSTANCE_B: Self = Self { inner: 22222 };

    const SHARED_PTR_BASE_A: SharedPtrBase<Self> =
      SharedPtrBase([1, 1], PhantomData);
    const SHARED_PTR_BASE_B: SharedPtrBase<Self> =
      SharedPtrBase([2, 2], PhantomData);
  }

  impl Shared for MockSharedObj {
    fn clone(_: &SharedPtrBase<Self>) -> SharedPtrBase<Self> {
      unimplemented!()
    }

    fn from_unique_ptr(_: UniquePtr<Self>) -> SharedPtrBase<Self> {
      unimplemented!()
    }

    fn get(p: &SharedPtrBase<Self>) -> *const Self {
      match p {
        &Self::SHARED_PTR_BASE_A => &Self::INSTANCE_A,
        &Self::SHARED_PTR_BASE_B => &Self::INSTANCE_B,
        p if p == &Default::default() => null(),
        _ => unreachable!(),
      }
    }

    fn reset(p: &mut SharedPtrBase<Self>) {
      forget(take(p));
    }

    fn use_count(p: &SharedPtrBase<Self>) -> long {
      match p {
        &Self::SHARED_PTR_BASE_A => 1,
        &Self::SHARED_PTR_BASE_B => 2,
        p if p == &Default::default() => 0,
        _ => unreachable!(),
      }
    }
  }

  #[test]
  fn shared_ptr_and_shared_ref() {
    let mut shared_ptr_a1 = SharedPtr(MockSharedObj::SHARED_PTR_BASE_A);
    assert!(!shared_ptr_a1.is_null());
    shared_ptr_a1.assert_use_count_eq(1);

    let shared_ref_a: SharedRef<_> = shared_ptr_a1.take().unwrap();
    assert_eq!(shared_ref_a.inner, 11111);
    shared_ref_a.assert_use_count_eq(1);

    assert!(shared_ptr_a1.is_null());
    shared_ptr_a1.assert_use_count_eq(0);

    let shared_ptr_a2: SharedPtr<_> = shared_ref_a.into();
    assert!(!shared_ptr_a2.is_null());
    shared_ptr_a2.assert_use_count_eq(1);
    assert_eq!(shared_ptr_a2.unwrap().inner, 11111);

    let mut shared_ptr_b1 = SharedPtr(MockSharedObj::SHARED_PTR_BASE_B);
    assert!(!shared_ptr_b1.is_null());
    shared_ptr_b1.assert_use_count_eq(2);

    let shared_ref_b: SharedRef<_> = shared_ptr_b1.take().unwrap();
    assert_eq!(shared_ref_b.inner, 22222);
    shared_ref_b.assert_use_count_eq(2);

    assert!(shared_ptr_b1.is_null());
    shared_ptr_b1.assert_use_count_eq(0);

    let shared_ptr_b2: SharedPtr<_> = shared_ref_b.into();
    assert!(!shared_ptr_b2.is_null());
    shared_ptr_b2.assert_use_count_eq(2);
    assert_eq!(shared_ptr_b2.unwrap().inner, 22222);
  }

  #[test]
  #[should_panic(expected = "assertion failed: \
      `SharedPtr<v8::support::tests::MockSharedObj>` reference count \
      does not match expectation")]
  fn shared_ptr_use_count_assertion_failed() {
    let shared_ptr: SharedPtr<MockSharedObj> = Default::default();
    shared_ptr.assert_use_count_eq(3);
  }

  #[test]
  #[should_panic(expected = "assertion failed: \
      `SharedRef<v8::support::tests::MockSharedObj>` reference count \
      does not match expectation")]
  fn shared_ref_use_count_assertion_failed() {
    let shared_ref = SharedRef(MockSharedObj::SHARED_PTR_BASE_B);
    shared_ref.assert_use_count_eq(7);
  }

  static TEST_OBJ_DROPPED: AtomicBool = AtomicBool::new(false);

  struct TestObj {
    pub id: u32,
  }

  impl Drop for TestObj {
    fn drop(&mut self) {
      assert!(!TEST_OBJ_DROPPED.swap(true, Ordering::SeqCst));
    }
  }

  struct TestObjRef(TestObj);

  impl Deref for TestObjRef {
    type Target = TestObj;

    fn deref(&self) -> &TestObj {
      &self.0
    }
  }

  impl Borrow<TestObj> for TestObjRef {
    fn borrow(&self) -> &TestObj {
      self
    }
  }

  #[test]
  fn allocation() {
    // Static.
    static STATIC_OBJ: TestObj = TestObj { id: 1 };
    let owner = Allocation::of(&STATIC_OBJ);
    match owner {
      Allocation::Static(_) => assert_eq!(owner.id, 1),
      _ => panic!(),
    }
    drop(owner);
    assert!(!TEST_OBJ_DROPPED.load(Ordering::SeqCst));

    // Arc.
    let owner = Allocation::of(Arc::new(TestObj { id: 2 }));
    match owner {
      Allocation::Arc(_) => assert_eq!(owner.id, 2),
      _ => panic!(),
    }
    drop(owner);
    assert!(TEST_OBJ_DROPPED.swap(false, Ordering::SeqCst));

    // Box.
    let owner = Allocation::of(Box::new(TestObj { id: 3 }));
    match owner {
      Allocation::Box(_) => assert_eq!(owner.id, 3),
      _ => panic!(),
    }
    drop(owner);
    assert!(TEST_OBJ_DROPPED.swap(false, Ordering::SeqCst));

    // Rc.
    let owner = Allocation::of(Rc::new(TestObj { id: 4 }));
    match owner {
      Allocation::Rc(_) => assert_eq!(owner.id, 4),
      _ => panic!(),
    }
    drop(owner);
    assert!(TEST_OBJ_DROPPED.swap(false, Ordering::SeqCst));

    // Other.
    let owner = Allocation::of(TestObjRef(TestObj { id: 5 }));
    match owner {
      Allocation::Other(_) => assert_eq!(owner.id, 5),
      _ => panic!(),
    }
    drop(owner);
    assert!(TEST_OBJ_DROPPED.swap(false, Ordering::SeqCst));

    // Contents of Vec should not be moved.
    let vec = vec![1u8, 2, 3, 5, 8, 13, 21];
    let vec_element_ptrs =
      vec.iter().map(|i| i as *const u8).collect::<Vec<_>>();
    let owner = Allocation::of(vec);
    match owner {
      Allocation::Other(_) => {}
      _ => panic!(),
    }
    owner
      .iter()
      .map(|i| i as *const u8)
      .zip(vec_element_ptrs)
      .for_each(|(p1, p2)| assert_eq!(p1, p2));
  }
}