default search action
Michael Hinze
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j46]Niklas Kühl, Hendrik Fischer, Michael Hinze, Thomas Rung:
An incremental singular value decomposition approach for large-scale spatially parallel & distributed but temporally serial data - applied to technical flows. Comput. Phys. Commun. 296: 109022 (2024) - 2023
- [i9]Niklas Kühl, Hendrik Fischer, Michael Hinze, Thomas Rung:
An Incremental Singular Value Decomposition Approach for Large-Scale Spatially Parallel & Distributed but Temporally Serial Data - Applied to Technical Flows. CoRR abs/2302.09149 (2023) - [i8]Michael Hinze, Christian Kahle:
A least-squares space-time approach for parabolic equations. CoRR abs/2305.03402 (2023) - [i7]Klaus Deckelnick, Philip J. Herbert, Michael Hinze:
Convergence of a steepest descent algorithm in shape optimisation using $W^{1, \infty}$ functions. CoRR abs/2310.15078 (2023) - 2022
- [j45]Alessandro Alla, Carmen Gräßle, Michael Hinze:
Time Adaptivity in Model Predictive Control. J. Sci. Comput. 90(1): 12 (2022) - 2021
- [j44]Michael Hinze, Denis Korolev:
A space-time certified reduced basis method for quasilinear parabolic partial differential equations. Adv. Comput. Math. 47(3): 36 (2021) - [j43]Niklas Kühl, Jörn Kröger, Martin Siebenborn, Michael Hinze, Thomas Rung:
Adjoint complement to the volume-of-fluid method for immiscible flows. J. Comput. Phys. 440: 110411 (2021) - [i6]Peter Marvin Müller, Niklas Kühl, Martin Siebenborn, Klaus Deckelnick, Michael Hinze, Thomas Rung:
A Novel $p$-Harmonic Descent Approach Applied to Fluid Dynamic Shape Optimization. CoRR abs/2103.14735 (2021) - 2020
- [j42]Ahmad Ahmad Ali, Michael Hinze:
Reduced Basis Methods - An Application to Variational Discretization of Parametrized Elliptic Optimal Control Problems. SIAM J. Sci. Comput. 42(1): A271-A291 (2020) - [i5]Michael Hinze, Denis Korolev:
Reduced basis methods for quasilinear elliptic PDEs with applications to permanent magnet synchronous motors. CoRR abs/2002.04288 (2020) - [i4]Niklas Kühl, Michael Hinze, Thomas Rung:
Cahn-Hilliard Navier-Stokes Simulations for Marine Free-Surface Flows. CoRR abs/2002.04885 (2020) - [i3]Michael Hinze, Denis Korolev:
A space-time certified reduced basis method for quasilinear parabolic partial differential equations. CoRR abs/2004.00548 (2020)
2010 – 2019
- 2019
- [j41]Alessandro Alla, Michael Hinze, Philip Kolvenbach, Oliver Lass, Stefan Ulbrich:
A certified model reduction approach for robust parameter optimization with PDE constraints. Adv. Comput. Math. 45(3): 1221-1250 (2019) - [j40]Carmen Gräßle, Michael Hinze, Jens Lang, Sebastian Ullmann:
POD model order reduction with space-adapted snapshots for incompressible flows. Adv. Comput. Math. 45(5): 2401-2428 (2019) - [i2]Carmen Gräßle, Michael Hinze, Stefan Volkwein:
Model Order Reduction by Proper Orthogonal Decomposition. CoRR abs/1906.05188 (2019) - [i1]Abramo Agosti, Pasquale Ciarletta, Harald Garcke, Michael Hinze:
Learning patient-specific parameters for a diffuse interface glioblastoma model from neuroimaging data. CoRR abs/1912.08036 (2019) - 2018
- [j39]Harald Garcke, Michael Hinze, Christian Kahle, Kei Fong Lam:
A phase field approach to shape optimization in Navier-Stokes flow with integral state constraints. Adv. Comput. Math. 44(5): 1345-1383 (2018) - [j38]Peter Benner, Heike Faßbender, Michael Hinze, Tatjana Stykel, Ralf Zimmermann:
Model reduction of complex dynamical systems - Editorial of the special issue corresponding to a workshop held at SDU Odense, Denmark, January 11-13, 2017. Adv. Comput. Math. 44(6): 1687-1691 (2018) - [j37]Carmen Gräßle, Michael Hinze:
POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations. Adv. Comput. Math. 44(6): 1941-1978 (2018) - [j36]Michael Hinze, Barbara Kaltenbacher, Tran Nhan Tam Quyen:
Identifying conductivity in electrical impedance tomography with total variation regularization. Numerische Mathematik 138(3): 723-765 (2018) - 2017
- [j35]Ahmad Ahmad Ali, Elisabeth Ullmann, Michael Hinze:
Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients. SIAM/ASA J. Uncertain. Quantification 5(1): 466-492 (2017) - [j34]Klaus Deckelnick, Michael Hinze, Tobias Jordan:
An Optimal Shape Design Problem for Plates. SIAM J. Numer. Anal. 55(1): 109-130 (2017) - 2016
- [j33]Ahmad Ahmad Ali, Klaus Deckelnick, Michael Hinze:
Global minima for semilinear optimal control problems. Comput. Optim. Appl. 65(1): 261-288 (2016) - [j32]Wei Gong, Michael Hinze, Zhaojie Zhou:
Finite Element Method and A Priori Error Estimates for Dirichlet Boundary Control Problems Governed by Parabolic PDEs. J. Sci. Comput. 66(3): 941-967 (2016) - 2015
- [j31]Peter Benner, Roland Herzog, Michael Hinze, Arnd Rösch, Anton Schiela, Volker Schulz:
Introduction to the special issue for EUCCO 2013. Comput. Optim. Appl. 62(1): 1-3 (2015) - [j30]Nikolaus von Daniels, Michael Hinze, Morten Vierling:
Crank-Nicolson Time Stepping and Variational Discretization of Control-Constrained Parabolic Optimal Control Problems. SIAM J. Control. Optim. 53(3): 1182-1198 (2015) - [j29]Harald Garcke, Claudia Hecht, Michael Hinze, Christian Kahle:
Numerical Approximation of Phase Field Based Shape and Topology Optimization for Fluids. SIAM J. Sci. Comput. 37(4) (2015) - 2014
- [j28]Wei Gong, Michael Hinze, Zhaojie Zhou:
A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control. SIAM J. Control. Optim. 52(1): 97-119 (2014) - 2013
- [j27]Wei Gong, Michael Hinze:
Error estimates for parabolic optimal control problems with control and state constraints. Comput. Optim. Appl. 56(1): 131-151 (2013) - [j26]Michael Hintermüller, Michael Hinze, Christian Kahle:
An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. J. Comput. Phys. 235: 810-827 (2013) - 2012
- [j25]Klaus Deckelnick, Michael Hinze:
A note on the approximation of elliptic control problems with bang-bang controls. Comput. Optim. Appl. 51(2): 931-939 (2012) - [j24]Michael Hinze, Christian Meyer:
Stability of semilinear elliptic optimal control problems with pointwise state constraints. Comput. Optim. Appl. 52(1): 87-114 (2012) - [j23]Wei Gong, Michael Hinze, Zhaojie Zhou:
Space-time finite element approximation of parabolic optimal control problems. J. Num. Math. 20(2): 111-146 (2012) - [j22]Michael Hinze, Morten Vierling:
The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems; implementation, convergence and globalization. Optim. Methods Softw. 27(6): 933-950 (2012) - [p4]Michael Hinze, Michael Köster, Stefan Turek:
A Space-Time Multigrid Method for Optimal Flow Control. Constrained Optimization and Optimal Control for Partial Differential Equations 2012: 147-170 - [p3]Michael Hinze, Morten Vierling:
A Globalized Semi-smooth Newton Method for Variational Discretization of Control Constrained Elliptic Optimal Control Problems. Constrained Optimization and Optimal Control for Partial Differential Equations 2012: 171-182 - [p2]Andreas Günther, Michael Hinze, Moulay Hicham Tber:
A Posteriori Error Representations for Elliptic Optimal Control Problems with Control and State Constraints. Constrained Optimization and Optimal Control for Partial Differential Equations 2012: 303-317 - [p1]Michael Hinze, Arnd Rösch:
Discretization of Optimal Control Problems. Constrained Optimization and Optimal Control for Partial Differential Equations 2012: 391-430 - [e1]Günter Leugering, Sebastian Engell, Andreas Griewank, Michael Hinze, Rolf Rannacher, Volker Schulz, Michael Ulbrich, Stefan Ulbrich:
Constrained Optimization and Optimal Control for Partial Differential Equations. International series of numerical mathematics 160, Birkhäuser / Springer 2012, ISBN 978-3-0348-0132-4 [contents] - 2011
- [j21]Michael Hinze, Anton Schiela:
Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment. Comput. Optim. Appl. 48(3): 581-600 (2011) - [j20]Andreas Günther, Michael Hinze:
Elliptic control problems with gradient constraints - variational discrete versus piecewise constant controls. Comput. Optim. Appl. 49(3): 549-566 (2011) - [j19]Dirk Abbeloos, Moritz Diehl, Michael Hinze, Stefan Vandewalle:
Nested multigrid methods for time-periodic, parabolic optimal control problems. Comput. Vis. Sci. 14(1): 27-38 (2011) - [j18]Michael Hintermüller, Michael Hinze, Moulay Hicham Tber:
An adaptive finite-element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem. Optim. Methods Softw. 26(4-5): 777-811 (2011) - [c3]Michael Hinze, Ulrich Matthes:
Model Order Reduction for Networks of ODE and PDE Systems. System Modelling and Optimization 2011: 92-101 - [c2]Michael Hinze, Christian Kahle:
A Nonlinear Model Predictive Concept for Control of Two-Phase Flows Governed by the Cahn-Hilliard Navier-Stokes System. System Modelling and Optimization 2011: 348-357 - 2010
- [j17]Michael Hinze, Christian Meyer:
Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems. Comput. Optim. Appl. 46(3): 487-510 (2010) - [j16]Julia Sternberg, Michael Hinze:
A memory-reduced implementation of the Newton-CG method in optimal control of nonlinear time-dependent PDEs. Optim. Methods Softw. 25(4): 553-571 (2010)
2000 – 2009
- 2009
- [b1]Michael Hinze, René Pinnau, Michael Ulbrich, Stefan Ulbrich:
Optimization with PDE Constraints. Mathematical modelling 23, Springer 2009, ISBN 978-1-4020-8838-4, pp. I-XI, 1-270 - [j15]Klaus Deckelnick, Andreas Günther, Michael Hinze:
Finite element approximation of elliptic control problems with constraints on the gradient. Numerische Mathematik 111(3): 335-350 (2009) - [j14]Klaus Deckelnick, Andreas Günther, Michael Hinze:
Finite Element Approximation of Dirichlet Boundary Control for Elliptic PDEs on Two- and Three-Dimensional Curved Domains. SIAM J. Control. Optim. 48(4): 2798-2819 (2009) - [j13]Michael Hintermüller, Michael Hinze:
Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment. SIAM J. Numer. Anal. 47(3): 1666-1683 (2009) - 2008
- [j12]Michael Hinze, Stefan Volkwein:
Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39(3): 319-345 (2008) - [j11]Andreas Günther, Michael Hinze:
A posteriori error control of a state constrained elliptic control problem. J. Num. Math. 16(4): 307-322 (2008) - 2007
- [j10]Michael Hinze, Stefan Ziegenbalg:
Optimal control of the free boundary in a two-phase Stefan problem. J. Comput. Phys. 223(2): 657-684 (2007) - [j9]Klaus Deckelnick, Michael Hinze:
Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem. SIAM J. Numer. Anal. 45(5): 1937-1953 (2007) - 2006
- [j8]Michael Hintermüller, Michael Hinze:
A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints. SIAM J. Optim. 16(4): 1177-1200 (2006) - 2005
- [j7]Michael Hinze:
A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case. Comput. Optim. Appl. 30(1): 45-61 (2005) - [j6]Michael Hinze, Julia Sternberg:
A-revolve: an adaptive memory-reduced procedure for calculating adjoints; with an application to computing adjoints of the instationary Navier-Stokes system. Optim. Methods Softw. 20(6): 645-663 (2005) - [j5]Michael Hinze:
Instantaneous Closed Loop Control of the Navier-Stokes System. SIAM J. Control. Optim. 44(2): 564-583 (2005) - 2004
- [j4]Klaus Deckelnick, Michael Hinze:
Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations. Numerische Mathematik 97(2): 297-320 (2004) - 2003
- [j3]Michael Hinze, Thomas Slawig:
Adjoint gradients compared to gradients from algorithmic differentiation in instantaneous control of the Navier-Stokes equations. Optim. Methods Softw. 18(3): 299-315 (2003) - [c1]Michael Hinze, Daniel Wachsmuth:
Fast Closed Loop Control of the Navier-Stokes System. HPSC 2003: 189-201 - 2001
- [j2]Michael Hinze, Karl Kunisch:
Second Order Methods for Optimal Control of Time-Dependent Fluid Flow. SIAM J. Control. Optim. 40(3): 925-946 (2001)
1990 – 1999
- 1993
- [j1]Michael Hinze:
On the Numerical Treatment of Quasiminimal Surfaces. IMPACT Comput. Sci. Eng. 5(4): 249-270 (1993)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:13 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint