default search action
Raman Arora
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c79]Michael Menart, Enayat Ullah, Raman Arora, Raef Bassily, Cristóbal Guzmán:
Differentially Private Non-Convex Optimization under the KL Condition with Optimal Rates. ALT 2024: 868-906 - [c78]Thanh Nguyen-Tang, Raman Arora:
On The Statistical Complexity of Offline Decision-Making. ICML 2024 - [c77]Yunjuan Wang, Raman Arora:
Adversarially Robust Hypothesis Transfer Learning. ICML 2024 - [c76]Yunjuan Wang, Kaibo Zhang, Raman Arora:
Benign Overfitting in Adversarial Training of Neural Networks. ICML 2024 - [i46]Thanh Nguyen-Tang, Raman Arora:
On Sample-Efficient Offline Reinforcement Learning: Data Diversity, Posterior Sampling, and Beyond. CoRR abs/2401.03301 (2024) - [i45]Yunjuan Wang, Hussein Hazimeh, Natalia Ponomareva, Alexey Kurakin, Ibrahim Hammoud, Raman Arora:
DART: A Principled Approach to Adversarially Robust Unsupervised Domain Adaptation. CoRR abs/2402.11120 (2024) - [i44]Enayat Ullah, Michael Menart, Raef Bassily, Cristóbal Guzmán, Raman Arora:
Public-data Assisted Private Stochastic Optimization: Power and Limitations. CoRR abs/2403.03856 (2024) - [i43]Haque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, Doina Precup:
Offline Multitask Representation Learning for Reinforcement Learning. CoRR abs/2403.11574 (2024) - [i42]Thanh Nguyen-Tang, Raman Arora:
Learning in Markov Games with Adaptive Adversaries: Policy Regret, Fundamental Barriers, and Efficient Algorithms. CoRR abs/2411.00707 (2024) - 2023
- [j13]Enayat Ullah, Raman Arora:
Generalization bounds for Kernel Canonical Correlation Analysis. Trans. Mach. Learn. Res. 2023 (2023) - [j12]Enayat Ullah, Harry Lang, Raman Arora, Vladimir Braverman:
Clustering using Approximate Nearest Neighbour Oracles. Trans. Mach. Learn. Res. 2023 (2023) - [c75]Thanh Nguyen-Tang, Ming Yin, Sunil Gupta, Svetha Venkatesh, Raman Arora:
On Instance-Dependent Bounds for Offline Reinforcement Learning with Linear Function Approximation. AAAI 2023: 9310-9318 - [c74]Jared Markowitz, Ryan W. Gardner, Ashley J. Llorens, Raman Arora, I-Jeng Wang:
A Risk-Sensitive Approach to Policy Optimization. AAAI 2023: 15019-15027 - [c73]Thanh Nguyen-Tang, Raman Arora:
VIPeR: Provably Efficient Algorithm for Offline RL with Neural Function Approximation. ICLR 2023 - [c72]Raman Arora, Raef Bassily, Tomás González, Cristóbal Guzmán, Michael Menart, Enayat Ullah:
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization. ICML 2023: 1060-1092 - [c71]Enayat Ullah, Raman Arora:
From Adaptive Query Release to Machine Unlearning. ICML 2023: 34642-34667 - [c70]Anh Do, Thanh Nguyen-Tang, Raman Arora:
Multi-Agent Learning with Heterogeneous Linear Contextual Bandits. NeurIPS 2023 - [c69]Poorya Mianjy, Raman Arora:
Robustness Guarantees for Adversarially Trained Neural Networks. NeurIPS 2023 - [c68]Thanh Nguyen-Tang, Raman Arora:
On Sample-Efficient Offline Reinforcement Learning: Data Diversity, Posterior Sampling and Beyond. NeurIPS 2023 - [c67]Austin Watkins, Enayat Ullah, Thanh Nguyen-Tang, Raman Arora:
Optimistic Rates for Multi-Task Representation Learning. NeurIPS 2023 - [i41]Thanh Nguyen-Tang, Raman Arora:
Provably Efficient Neural Offline Reinforcement Learning via Perturbed Rewards. CoRR abs/2302.12780 (2023) - [i40]Enayat Ullah, Raman Arora:
From Adaptive Query Release to Machine Unlearning. CoRR abs/2307.11228 (2023) - [i39]Michael Menart, Enayat Ullah, Raman Arora, Raef Bassily, Cristóbal Guzmán:
Differentially Private Non-Convex Optimization under the KL Condition with Optimal Rates. CoRR abs/2311.13447 (2023) - 2022
- [j11]Amir Alipour-Fanid, Monireh Dabaghchian, Raman Arora, Kai Zeng:
Multiuser Scheduling in Centralized Cognitive Radio Networks: A Multi-Armed Bandit Approach. IEEE Trans. Cogn. Commun. Netw. 8(2): 1074-1091 (2022) - [c66]Raman Arora, Raef Bassily, Cristóbal Guzmán, Michael Menart, Enayat Ullah:
Differentially Private Generalized Linear Models Revisited. NeurIPS 2022 - [c65]Yunjuan Wang, Enayat Ullah, Poorya Mianjy, Raman Arora:
Adversarial Robustness is at Odds with Lazy Training. NeurIPS 2022 - [i38]Raman Arora, Raef Bassily, Cristóbal Guzmán, Michael Menart, Enayat Ullah:
Differentially Private Generalized Linear Models Revisited. CoRR abs/2205.03014 (2022) - [i37]Raman Arora, Raef Bassily, Tomás González, Cristóbal Guzmán, Michael Menart, Enayat Ullah:
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization. CoRR abs/2206.00846 (2022) - [i36]Yunjuan Wang, Enayat Ullah, Poorya Mianjy, Raman Arora:
Adversarial Robustness is at Odds with Lazy Training. CoRR abs/2207.00411 (2022) - [i35]Jared Markowitz, Ryan W. Gardner, Ashley J. Llorens, Raman Arora, I-Jeng Wang:
A Risk-Sensitive Approach to Policy Optimization. CoRR abs/2208.09106 (2022) - [i34]Thanh Nguyen-Tang, Ming Yin, Sunil Gupta, Svetha Venkatesh, Raman Arora:
On Instance-Dependent Bounds for Offline Reinforcement Learning with Linear Function Approximation. CoRR abs/2211.13208 (2022) - 2021
- [c64]Jalaj Upadhyay, Sarvagya Upadhyay, Raman Arora:
Differentially Private Analysis on Graph Streams. AISTATS 2021: 1171-1179 - [c63]Raman Arora, Teodor Vanislavov Marinov, Mehryar Mohri:
Corralling Stochastic Bandit Algorithms. AISTATS 2021: 2116-2124 - [c62]Enayat Ullah, Tung Mai, Anup Rao, Ryan A. Rossi, Raman Arora:
Machine Unlearning via Algorithmic Stability. COLT 2021: 4126-4142 - [c61]Raman Arora, Peter L. Bartlett, Poorya Mianjy, Nathan Srebro:
Dropout: Explicit Forms and Capacity Control. ICML 2021: 351-361 - [c60]Yunjuan Wang, Poorya Mianjy, Raman Arora:
Robust Learning for Data Poisoning Attacks. ICML 2021: 10859-10869 - [i33]Enayat Ullah, Tung Mai, Anup Rao, Ryan A. Rossi, Raman Arora:
Machine Unlearning via Algorithmic Stability. CoRR abs/2102.13179 (2021) - 2020
- [j10]Lucia Specia, Loïc Barrault, Ozan Caglayan, Amanda Cardoso Duarte, Desmond Elliott, Spandana Gella, Nils Holzenberger, Chiraag Lala, Sun Jae Lee, Jindrich Libovický, Pranava Madhyastha, Florian Metze, Karl Mulligan, Alissa Ostapenko, Shruti Palaskar, Ramon Sanabria, Josiah Wang, Raman Arora:
Grounded Sequence to Sequence Transduction. IEEE J. Sel. Top. Signal Process. 14(3): 577-591 (2020) - [c59]Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman, Joseph Gonzalez, Raman Arora:
FetchSGD: Communication-Efficient Federated Learning with Sketching. ICML 2020: 8253-8265 - [c58]Poorya Mianjy, Raman Arora:
On Convergence and Generalization of Dropout Training. NeurIPS 2020 - [c57]Jeremias Sulam, Ramchandran Muthukumar, Raman Arora:
Adversarial Robustness of Supervised Sparse Coding. NeurIPS 2020 - [c56]Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, Xin Jin:
Is Network the Bottleneck of Distributed Training? NetAI@SIGCOMM 2020: 8-13 - [i32]Raman Arora, Teodor V. Marinov, Enayat Ullah:
Private Stochastic Convex Optimization: Efficient Algorithms for Non-smooth Objectives. CoRR abs/2002.09609 (2020) - [i31]Raman Arora, Peter L. Bartlett, Poorya Mianjy, Nathan Srebro:
Dropout: Explicit Forms and Capacity Control. CoRR abs/2003.03397 (2020) - [i30]Raman Arora, Teodor V. Marinov, Mehryar Mohri:
Corralling Stochastic Bandit Algorithms. CoRR abs/2006.09255 (2020) - [i29]Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, Xin Jin:
Is Network the Bottleneck of Distributed Training? CoRR abs/2006.10103 (2020) - [i28]Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman, Joseph Gonzalez, Raman Arora:
FetchSGD: Communication-Efficient Federated Learning with Sketching. CoRR abs/2007.07682 (2020) - [i27]Jeremias Sulam, Ramchandran Muthukumar, Raman Arora:
Adversarial Robustness of Supervised Sparse Coding. CoRR abs/2010.12088 (2020) - [i26]Poorya Mianjy, Raman Arora:
On Convergence and Generalization of Dropout Training. CoRR abs/2010.12711 (2020)
2010 – 2019
- 2019
- [j9]Xingguo Li, Junwei Lu, Raman Arora, Jarvis D. Haupt, Han Liu, Zhaoran Wang, Tuo Zhao:
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization. IEEE Trans. Inf. Theory 65(6): 3489-3514 (2019) - [c55]Nils Holzenberger, Shruti Palaskar, Pranava Madhyastha, Florian Metze, Raman Arora:
Learning from Multiview Correlations in Open-domain Videos. ICASSP 2019: 8628-8632 - [c54]Poorya Mianjy, Raman Arora:
On Dropout and Nuclear Norm Regularization. ICML 2019: 4575-4584 - [c53]Chris Paxton, Yotam Barnoy, Kapil D. Katyal, Raman Arora, Gregory D. Hager:
Visual Robot Task Planning. ICRA 2019: 8832-8838 - [c52]Raman Arora, Teodor Vanislavov Marinov, Mehryar Mohri:
Bandits with Feedback Graphs and Switching Costs. NeurIPS 2019: 10397-10407 - [c51]Raman Arora, Teodor Vanislavov Marinov:
Efficient Convex Relaxations for Streaming PCA. NeurIPS 2019: 10496-10505 - [c50]Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, Raman Arora:
Communication-efficient Distributed SGD with Sketching. NeurIPS 2019: 13144-13154 - [c49]Raman Arora, Jalaj Upadhyay:
On Differentially Private Graph Sparsification and Applications. NeurIPS 2019: 13378-13389 - [c48]Adrian Benton, Huda Khayrallah, Biman Gujral, Dee Ann Reisinger, Sheng Zhang, Raman Arora:
Deep Generalized Canonical Correlation Analysis. RepL4NLP@ACL 2019: 1-6 - [c47]Xingguo Li, Haoming Jiang, Jarvis D. Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao:
On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don't Worry About its Nonsmooth Loss Function. UAI 2019: 49-59 - [i25]Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, Raman Arora:
Communication-efficient distributed SGD with Sketching. CoRR abs/1903.04488 (2019) - [i24]Poorya Mianjy, Raman Arora:
On Dropout and Nuclear Norm Regularization. CoRR abs/1905.11887 (2019) - [i23]Raman Arora, Teodor V. Marinov, Mehryar Mohri:
Bandits with Feedback Graphs and Switching Costs. CoRR abs/1907.12189 (2019) - [i22]Nils Holzenberger, Raman Arora:
Multiview Representation Learning for a Union of Subspaces. CoRR abs/1912.12766 (2019) - 2018
- [j8]Juan Rafael Orozco-Arroyave, Juan Camilo Vásquez-Correa, Jesús Francisco Vargas-Bonilla, Raman Arora, Najim Dehak, Phani S. Nidadavolu, Heidi Christensen, Frank Rudzicz, Maria Yancheva, Hamid R. Chinaei, Alyssa Vann, Nikolai Vogler, Tobias Bocklet, Milos Cernak, Julius Hannink, Elmar Nöth:
NeuroSpeech: An open-source software for Parkinson's speech analysis. Digit. Signal Process. 77: 207-221 (2018) - [j7]Juan Rafael Orozco-Arroyave, Juan Camilo Vásquez-Correa, Jesús Francisco Vargas-Bonilla, Raman Arora, Najim Dehak, Phani S. Nidadavolu, Heidi Christensen, Frank Rudzicz, Maria Yancheva, Hamid R. Chinaei, Alyssa Vann, Nikolai Vogler, Tobias Bocklet, Milos Cernak, Julius Hannink, Elmar Nöth:
NeuroSpeech. SoftwareX 8: 69-70 (2018) - [c46]Raman Arora, Amitabh Basu, Poorya Mianjy, Anirbit Mukherjee:
Understanding Deep Neural Networks with Rectified Linear Units. ICLR (Poster) 2018 - [c45]Teodor Vanislavov Marinov, Poorya Mianjy, Raman Arora:
Streaming Principal Component Analysis in Noisy Settings. ICML 2018: 3410-3419 - [c44]Poorya Mianjy, Raman Arora:
Stochastic PCA with 𝓁2 and 𝓁1 Regularization. ICML 2018: 3528-3536 - [c43]Poorya Mianjy, Raman Arora, René Vidal:
On the Implicit Bias of Dropout. ICML 2018: 3537-3545 - [c42]Xingguo Li, Jarvis D. Haupt, Junwei Lu, Zhaoran Wang, Raman Arora, Han Liu, Tuo Zhao:
Symmetry. Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization. ITA 2018: 1-9 - [c41]Raman Arora, Vladimir Braverman, Jalaj Upadhyay:
Differentially Private Robust Low-Rank Approximation. NeurIPS 2018: 4141-4149 - [c40]Lin F. Yang, Raman Arora, Vladimir Braverman, Tuo Zhao:
The Physical Systems Behind Optimization Algorithms. NeurIPS 2018: 4377-4386 - [c39]Raman Arora, Michael Dinitz, Teodor Vanislavov Marinov, Mehryar Mohri:
Policy Regret in Repeated Games. NeurIPS 2018: 6733-6742 - [c38]Enayat Ullah, Poorya Mianjy, Teodor Vanislavov Marinov, Raman Arora:
Streaming Kernel PCA with \tilde{O}(\sqrt{n}) Random Features. NeurIPS 2018: 7322-7332 - [i21]Chris Paxton, Yotam Barnoy, Kapil D. Katyal, Raman Arora, Gregory D. Hager:
Visual Robot Task Planning. CoRR abs/1804.00062 (2018) - [i20]Poorya Mianjy, Raman Arora, René Vidal:
On the Implicit Bias of Dropout. CoRR abs/1806.09777 (2018) - [i19]Enayat Ullah, Poorya Mianjy, Teodor V. Marinov, Raman Arora:
Streaming Kernel PCA with Õ(√n) Random Features. CoRR abs/1808.00934 (2018) - [i18]Raman Arora, Michael Dinitz, Teodor V. Marinov, Mehryar Mohri:
Policy Regret in Repeated Games. CoRR abs/1811.04127 (2018) - [i17]Nils Holzenberger, Shruti Palaskar, Pranava Madhyastha, Florian Metze, Raman Arora:
Learning from Multiview Correlations in Open-Domain Videos. CoRR abs/1811.08890 (2018) - 2017
- [j6]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. J. Mach. Learn. Res. 18: 184:1-184:24 (2017) - [c37]Juan Camilo Vásquez-Correa, Juan Rafael Orozco-Arroyave, Raman Arora, Elmar Nöth, Najim Dehak, Heidi Christensen, Frank Rudzicz, Tobias Bocklet, Milos Cernak, Hamid R. Chinaei, Julius Hannink, Phani Sankar Nidadavolu, Maria Yancheva, Alyssa Vann, Nikolai Vogler:
Multi-view representation learning via gcca for multimodal analysis of Parkinson's disease. ICASSP 2017: 2966-2970 - [c36]Milos Cernak, Elmar Nöth, Frank Rudzicz, Heidi Christensen, Juan Rafael Orozco-Arroyave, Raman Arora, Tobias Bocklet, Hamidreza Chinaei, Julius Hannink, Phani Sankar Nidadavolu, Juan Camilo Vásquez-Correa, Maria Yancheva, Alyssa Vann, Nikolai Vogler:
On the impact of non-modal phonation on phonological features. ICASSP 2017: 5090-5094 - [c35]Leonardo Badino, Luca Franceschi, Raman Arora, Michele Donini, Massimiliano Pontil:
A Speaker Adaptive DNN Training Approach for Speaker-Independent Acoustic Inversion. INTERSPEECH 2017: 984-988 - [c34]Raman Arora, Teodor Vanislavov Marinov, Poorya Mianjy, Nati Srebro:
Stochastic Approximation for Canonical Correlation Analysis. NIPS 2017: 4775-4784 - [i16]Adrian Benton, Huda Khayrallah, Biman Gujral, Dee Ann Reisinger, Sheng Zhang, Raman Arora:
Deep Generalized Canonical Correlation Analysis. CoRR abs/1702.02519 (2017) - [i15]Raman Arora, Teodor V. Marinov, Poorya Mianjy:
Stochastic Approximation for Canonical Correlation Analysis. CoRR abs/1702.06818 (2017) - [i14]Chris Paxton, Kapil D. Katyal, Christian Rupprecht, Raman Arora, Gregory D. Hager:
Learning to Imagine Manipulation Goals for Robot Task Planning. CoRR abs/1711.02783 (2017) - [i13]Raman Arora, Amitabh Basu, Poorya Mianjy, Anirbit Mukherjee:
Understanding Deep Neural Networks with Rectified Linear Units. Electron. Colloquium Comput. Complex. TR17 (2017) - 2016
- [c33]Adrian Benton, Raman Arora, Mark Dredze:
Learning Multiview Embeddings of Twitter Users. ACL (2) 2016 - [c32]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. AISTATS 2016: 491-499 - [c31]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Jarvis D. Haupt:
Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning. ICML 2016: 917-925 - [c30]Raman Arora, Poorya Mianjy, Teodor V. Marinov:
Stochastic Optimization for Multiview Representation Learning using Partial Least Squares. ICML 2016: 1786-1794 - [c29]Mo Yu, Mark Dredze, Raman Arora, Matthew R. Gormley:
Embedding Lexical Features via Low-Rank Tensors. HLT-NAACL 2016: 1019-1029 - [c28]Peter Schulam, Raman Arora:
Disease Trajectory Maps. NIPS 2016: 4709-4717 - [i12]Weiran Wang, Raman Arora, Karen Livescu, Jeff A. Bilmes:
On Deep Multi-View Representation Learning: Objectives and Optimization. CoRR abs/1602.01024 (2016) - [i11]Mo Yu, Mark Dredze, Raman Arora, Matthew R. Gormley:
Embedding Lexical Features via Low-Rank Tensors. CoRR abs/1604.00461 (2016) - [i10]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Jarvis D. Haupt:
Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning. CoRR abs/1605.02711 (2016) - [i9]Xingguo Li, Jarvis D. Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao:
A First Order Free Lunch for SQRT-Lasso. CoRR abs/1605.07950 (2016) - [i8]Peter Schulam, Raman Arora:
Disease Trajectory Maps. CoRR abs/1606.09184 (2016) - [i7]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. CoRR abs/1607.02793 (2016) - [i6]Raman Arora, Amitabh Basu, Poorya Mianjy, Anirbit Mukherjee:
Understanding Deep Neural Networks with Rectified Linear Units. CoRR abs/1611.01491 (2016) - [i5]Lin F. Yang, Raman Arora, Vladimir Braverman, Tuo Zhao:
The Physical Systems Behind Optimization Algorithms. CoRR abs/1612.02803 (2016) - [i4]Xingguo Li, Zhaoran Wang, Junwei Lu, Raman Arora, Jarvis D. Haupt, Han Liu, Tuo Zhao:
Symmetry, Saddle Points, and Global Geometry of Nonconvex Matrix Factorization. CoRR abs/1612.09296 (2016) - 2015
- [c27]Weiran Wang, Raman Arora, Karen Livescu, Nathan Srebro:
Stochastic optimization for deep CCA via nonlinear orthogonal iterations. Allerton 2015: 688-695 - [c26]Weiran Wang, Raman Arora, Karen Livescu, Jeff A. Bilmes:
Unsupervised learning of acoustic features via deep canonical correlation analysis. ICASSP 2015: 4590-4594 - [c25]Weiran Wang, Raman Arora, Karen Livescu, Jeff A. Bilmes:
On Deep Multi-View Representation Learning. ICML 2015: 1083-1092 - [c24]Pushpendre Rastogi, Benjamin Van Durme, Raman Arora:
Multiview LSA: Representation Learning via Generalized CCA. HLT-NAACL 2015: 556-566 - [i3]Weiran Wang, Raman Arora, Karen Livescu, Nathan Srebro:
Stochastic Optimization for Deep CCA via Nonlinear Orthogonal Iterations. CoRR abs/1510.02054 (2015) - 2014
- [c23]John Goes, Teng Zhang, Raman Arora, Gilad Lerman:
Robust Stochastic Principal Component Analysis. AISTATS 2014: 266-274 - [c22]Raman Arora, Karen Livescu:
Multi-view learning with supervision for transformed bottleneck features. ICASSP 2014: 2499-2503 - [c21]Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, Han Liu:
Accelerated Mini-batch Randomized Block Coordinate Descent Method. NIPS 2014: 3329-3337 - [c20]Weiran Wang, Raman Arora, Karen Livescu:
Reconstruction of articulatory measurements with smoothed low-rank matrix completion. SLT 2014: 54-59 - 2013
- [j5]Raman Arora, Maya R. Gupta, Amol Kapila, Maryam Fazel:
Similarity-based clustering by left-stochastic matrix factorization. J. Mach. Learn. Res. 14(1): 1715-1746 (2013) - [c19]Raman Arora, Marina Meila:
Consensus Ranking with Signed Permutations. AISTATS 2013: 117-125 - [c18]Raman Arora, Karen Livescu:
Multi-view CCA-based acoustic features for phonetic recognition across speakers and domains. ICASSP 2013: 7135-7139 - [c17]Galen Andrew, Raman Arora, Jeff A. Bilmes, Karen Livescu:
Deep Canonical Correlation Analysis. ICML (3) 2013: 1247-1255 - [c16]Raman Arora, Andrew Cotter, Nati Srebro:
Stochastic Optimization of PCA with Capped MSG. NIPS 2013: 1815-1823 - [i2]Raman Arora, Andrew Cotter, Nathan Srebro:
Stochastic Optimization of PCA with Capped MSG. CoRR abs/1307.1674 (2013) - 2012
- [j4]Eric K. Garcia, Raman Arora, Maya R. Gupta:
Optimized Regression for Efficient Function Evaluation. IEEE Trans. Image Process. 21(9): 4128-4140 (2012) - [c15]Raman Arora, Andrew Cotter, Karen Livescu, Nathan Srebro:
Stochastic optimization for PCA and PLS. Allerton Conference 2012: 861-868 - [c14]Ofer Dekel, Ambuj Tewari, Raman Arora:
Online Bandit Learning against an Adaptive Adversary: from Regret to Policy Regret. ICML 2012 - [c13]Raman Arora, Karen Livescu:
Kernel CCA for multi-view learning of acoustic features using articulatory measurements. MLSLP 2012: 34-37 - [c12]Raman Arora, Ofer Dekel, Ambuj Tewari:
Deterministic MDPs with Adversarial Rewards and Bandit Feedback. UAI 2012: 93-101 - [i1]Raman Arora, Ofer Dekel, Ambuj Tewari:
Deterministic MDPs with Adversarial Rewards and Bandit Feedback. CoRR abs/1210.4843 (2012) - 2011
- [c11]Raman Arora, Maya R. Gupta:
Minimizing bearing bias in tracking by de-coupled rotation and translation estimates. FUSION 2011: 1-7 - [c10]Raman Arora, Maya R. Gupta, Amol Kapila, Maryam Fazel:
Clustering by Left-Stochastic Matrix Factorization. ICML 2011: 761-768 - 2010
- [j3]Raman Arora, Harish Parthasarathy:
Optimal estimation and detection in homogeneous spaces. IEEE Trans. Signal Process. 58(5): 2623-2635 (2010) - [c9]Raman Arora, Charles R. Dyer, Yu Hen Hu, Nigel Boston:
Distributed curve matching in camera networks using projective joint invariant signatures. ICDSC 2010: 103-110 - [c8]Raman Arora, William A. Sethares:
An Efficient and Stable Algorithm for Learning Rotations. ICPR 2010: 2993-2996
2000 – 2009
- 2009
- [c7]Raman Arora, Colin N. Dewey, William A. Sethares:
Reconstructing latent periods in genome sequences with insertions and deletions. GENSiPS 2009: 1-4 - [c6]Raman Arora, Yu Hen Hu, Charles R. Dyer:
Estimating correspondence between multiple cameras using joint invariants. ICASSP 2009: 805-808 - [c5]Raman Arora:
On Learning Rotations. NIPS 2009: 55-63 - 2008
- [j2]Raman Arora, William A. Sethares, James A. Bucklew:
Latent Periodicities in Genome Sequences. IEEE J. Sel. Top. Signal Process. 2(3): 332-342 (2008) - [c4]Raman Arora, William A. Sethares, James A. Bucklew:
Localizing time-varying periodicities in symbolic sequences. ICASSP 2008: 641-644 - [c3]Raman Arora, Harish Parthasarathy:
Spherical Wiener filter. ICIP 2008: 549-552 - [c2]Raman Arora, Harish Parthasarathy:
Navigation using a spherical camera. ICPR 2008: 1-4 - 2007
- [j1]Raman Arora, William A. Sethares:
Adaptive Wavetable Oscillators. IEEE Trans. Signal Process. 55(9): 4382-4392 (2007) - [c1]William A. Sethares, Raman Arora:
Equilibria of Adaptive Wavetable Oscillators with Applications to Beat Tracking. ICASSP (4) 2007: 1301-1304
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-12 21:59 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint