default search action
Samuel Vaiter
Person information
- affiliation: Université Côte d'Azur, Nice, France
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j15]Quentin Klopfenstein, Quentin Bertrand, Alexandre Gramfort, Joseph Salmon, Samuel Vaiter:
Local linear convergence of proximal coordinate descent algorithm. Optim. Lett. 18(1): 135-154 (2024) - [j14]Hashem Ghanem, Samuel Vaiter, Nicolas Keriven:
Gradient Scarcity in Graph Learning with Bilevel Optimization. Trans. Mach. Learn. Res. 2024 (2024) - [c13]Mathieu Dagréou, Thomas Moreau, Samuel Vaiter, Pierre Ablin:
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization. AISTATS 2024: 82-90 - [c12]Sophie Jaffard, Samuel Vaiter, Alexandre Muzy, Patricia Reynaud-Bouret:
Provable local learning rule by expert aggregation for a Hawkes network. AISTATS 2024: 1837-1845 - [i32]Franck Iutzeler, Edouard Pauwels, Samuel Vaiter:
Derivatives of Stochastic Gradient Descent. CoRR abs/2405.15894 (2024) - [i31]Jérôme Bolte, Quoc-Tung Le, Edouard Pauwels, Samuel Vaiter:
Geometric and computational hardness of bilevel programming. CoRR abs/2407.12372 (2024) - 2023
- [j13]Xavier Dupuis, Samuel Vaiter:
The Geometry of Sparse Analysis Regularization. SIAM J. Optim. 33(2): 842-867 (2023) - [j12]Edouard Pauwels, Samuel Vaiter:
The Derivatives of Sinkhorn-Knopp Converge. SIAM J. Optim. 33(3): 1494-1517 (2023) - [j11]Hashem Ghanem, Joseph Salmon, Nicolas Keriven, Samuel Vaiter:
Supervised Learning of Analysis-Sparsity Priors With Automatic Differentiation. IEEE Signal Process. Lett. 30: 339-343 (2023) - [c11]Rémi Catellier, Samuel Vaiter, Damien Garreau:
On the Robustness of Text Vectorizers. ICML 2023: 3782-3814 - [c10]Jérôme Bolte, Edouard Pauwels, Samuel Vaiter:
One-step differentiation of iterative algorithms. NeurIPS 2023 - [c9]Nicolas Keriven, Samuel Vaiter:
What functions can Graph Neural Networks compute on random graphs? The role of Positional Encoding. NeurIPS 2023 - [i30]Mathieu Dagréou, Thomas Moreau, Samuel Vaiter, Pierre Ablin:
A Near-Optimal Algorithm for Bilevel Empirical Risk Minimization. CoRR abs/2302.08766 (2023) - [i29]Rémi Catellier, Samuel Vaiter, Damien Garreau:
On the Robustness of Text Vectorizers. CoRR abs/2303.07203 (2023) - [i28]Hashem Ghanem, Samuel Vaiter, Nicolas Keriven:
Gradient scarcity with Bilevel Optimization for Graph Learning. CoRR abs/2303.13964 (2023) - [i27]Matthieu Cordonnier, Nicolas Keriven, Nicolas Tremblay, Samuel Vaiter:
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Large Random Graphs. CoRR abs/2304.11140 (2023) - [i26]Jérôme Bolte, Edouard Pauwels, Samuel Vaiter:
One-step differentiation of iterative algorithms. CoRR abs/2305.13768 (2023) - [i25]Nicolas Keriven, Samuel Vaiter:
What functions can Graph Neural Networks compute on random graphs? The role of Positional Encoding. CoRR abs/2305.14814 (2023) - 2022
- [j10]Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon:
Implicit Differentiation for Fast Hyperparameter Selection in Non-Smooth Convex Learning. J. Mach. Learn. Res. 23: 149:1-149:43 (2022) - [c8]Thomas Moreau, Mathurin Massias, Alexandre Gramfort, Pierre Ablin, Pierre-Antoine Bannier, Benjamin Charlier, Mathieu Dagréou, Tom Dupré la Tour, Ghislain Durif, Cássio F. Dantas, Quentin Klopfenstein, Johan Larsson, En Lai, Tanguy Lefort, Benoît Malézieux, Badr Moufad, Binh T. Nguyen, Alain Rakotomamonjy, Zaccharie Ramzi, Joseph Salmon, Samuel Vaiter:
Benchopt: Reproducible, efficient and collaborative optimization benchmarks. NeurIPS 2022 - [c7]Jérôme Bolte, Edouard Pauwels, Samuel Vaiter:
Automatic differentiation of nonsmooth iterative algorithms. NeurIPS 2022 - [c6]Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, Thomas Moreau:
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms. NeurIPS 2022 - [i24]Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, Thomas Moreau:
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms. CoRR abs/2201.13409 (2022) - [i23]Jérôme Bolte, Edouard Pauwels, Samuel Vaiter:
Automatic differentiation of nonsmooth iterative algorithms. CoRR abs/2206.00457 (2022) - [i22]Thomas Moreau, Mathurin Massias, Alexandre Gramfort, Pierre Ablin, Pierre-Antoine Bannier, Benjamin Charlier, Mathieu Dagréou, Tom Dupré la Tour, Ghislain Durif, Cássio F. Dantas, Quentin Klopfenstein, Johan Larsson, En Lai, Tanguy Lefort, Benoît Malézieux, Badr Moufad, Binh T. Nguyen, Alain Rakotomamonjy, Zaccharie Ramzi, Joseph Salmon, Samuel Vaiter:
Benchopt: Reproducible, efficient and collaborative optimization benchmarks. CoRR abs/2206.13424 (2022) - 2021
- [j9]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter:
Block-Based Refitting in ℓ 12 Sparse Regularization. J. Math. Imaging Vis. 63(2): 216-236 (2021) - [j8]Barbara Pascal, Samuel Vaiter, Nelly Pustelnik, Patrice Abry:
Automated Data-Driven Selection of the Hyperparameters for Total-Variation-Based Texture Segmentation. J. Math. Imaging Vis. 63(7): 923-952 (2021) - [j7]Quentin Klopfenstein, Samuel Vaiter:
Linear support vector regression with linear constraints. Mach. Learn. 110(7): 1939-1974 (2021) - [c5]Nicolas Keriven, Alberto Bietti, Samuel Vaiter:
On the Universality of Graph Neural Networks on Large Random Graphs. NeurIPS 2021: 6960-6971 - [i21]Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon:
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning. CoRR abs/2105.01637 (2021) - [i20]Nicolas Keriven, Alberto Bietti, Samuel Vaiter:
On the Universality of Graph Neural Networks on Large Random Graphs. CoRR abs/2105.13099 (2021) - 2020
- [c4]Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon:
Implicit differentiation of Lasso-type models for hyperparameter optimization. ICML 2020: 810-821 - [c3]Nicolas Keriven, Alberto Bietti, Samuel Vaiter:
Convergence and Stability of Graph Convolutional Networks on Large Random Graphs. NeurIPS 2020 - [i19]Nicolas Keriven, Samuel Vaiter:
Sparse and Smooth: improved guarantees for Spectral Clustering in the Dynamic Stochastic Block Model. CoRR abs/2002.02892 (2020) - [i18]Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon:
Implicit differentiation of Lasso-type models for hyperparameter optimization. CoRR abs/2002.08943 (2020) - [i17]Barbara Pascal, Samuel Vaiter, Nelly Pustelnik, Patrice Abry:
Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation. CoRR abs/2004.09434 (2020) - [i16]Nicolas Keriven, Alberto Bietti, Samuel Vaiter:
Convergence and Stability of Graph Convolutional Networks on Large Random Graphs. CoRR abs/2006.01868 (2020) - [i15]Quentin Klopfenstein, Quentin Bertrand, Alexandre Gramfort, Joseph Salmon, Samuel Vaiter:
Model identification and local linear convergence of coordinate descent. CoRR abs/2010.11825 (2020)
2010 – 2019
- 2019
- [j6]Abdessamad Barbara, Abderrahim Jourani, Samuel Vaiter:
Maximal Solutions of Sparse Analysis Regularization. J. Optim. Theory Appl. 180(2): 374-396 (2019) - [c2]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter:
Refitting Solutions Promoted by ℓ _12 Sparse Analysis Regularizations with Block Penalties. SSVM 2019: 131-143 - [i14]Mathurin Massias, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon:
Dual Extrapolation for Sparse Generalized Linear Models. CoRR abs/1907.05830 (2019) - 2018
- [j5]Samuel Vaiter, Gabriel Peyré, Jalal Fadili:
Model Consistency of Partly Smooth Regularizers. IEEE Trans. Inf. Theory 64(3): 1725-1737 (2018) - [i13]Yann Traonmilin, Samuel Vaiter:
Optimality of 1-norm regularization among weighted 1-norms for sparse recovery: a case study on how to find optimal regularizations. CoRR abs/1803.00773 (2018) - [i12]Yann Traonmilin, Samuel Vaiter, Rémi Gribonval:
Is the 1-norm the best convex sparse regularization? CoRR abs/1806.08690 (2018) - 2017
- [j4]Antonin Chambolle, Pauline Tan, Samuel Vaiter:
Accelerated Alternating Descent Methods for Dykstra-Like Problems. J. Math. Imaging Vis. 59(3): 481-497 (2017) - [j3]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter:
CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration. SIAM J. Imaging Sci. 10(1): 243-284 (2017) - 2016
- [i11]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter:
CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration. CoRR abs/1606.05158 (2016) - 2014
- [b1]Samuel Vaiter:
Low Complexity Regularizations of Inverse Problems. (Régularisations de Faible Complexité pour les Problèmes Inverses). Paris Dauphine University, France, 2014 - [j2]Charles-Alban Deledalle, Samuel Vaiter, Jalal Fadili, Gabriel Peyré:
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for Multiple Parameter Selection. SIAM J. Imaging Sci. 7(4): 2448-2487 (2014) - [i10]Samuel Vaiter, Charles-Alban Deledalle, Gabriel Peyré, Jalal Fadili, Charles Dossal:
The Degrees of Freedom of Partly Smooth Regularizers. CoRR abs/1404.5557 (2014) - [i9]Samuel Vaiter, Gabriel Peyré, Jalal Fadili:
Partly Smooth Regularization of Inverse Problems. CoRR abs/1405.1004 (2014) - [i8]Samuel Vaiter, Gabriel Peyré, Jalal Fadili:
Low Complexity Regularization of Linear Inverse Problems. CoRR abs/1407.1598 (2014) - [i7]Laurent Jacques, Christophe De Vleeschouwer, Yannick Boursier, Prasad Sudhakar, C. De Mol, Aleksandra Pizurica, Sandrine Anthoine, Pierre Vandergheynst, Pascal Frossard, Cagdas Bilen, Srdan Kitic, Nancy Bertin, Rémi Gribonval, Nicolas Boumal, Bamdev Mishra, Pierre-Antoine Absil, Rodolphe Sepulchre, Shaun Bundervoet, Colas Schretter, Ann Dooms, Peter Schelkens, Olivier Chabiron, François Malgouyres, Jean-Yves Tourneret, Nicolas Dobigeon, Pierre Chainais, Cédric Richard, Bruno Cornelis, Ingrid Daubechies, David B. Dunson, Marie Danková, Pavel Rajmic, Kévin Degraux, Valerio Cambareri, Bert Geelen, Gauthier Lafruit, Gianluca Setti, Jean-François Determe, Jérôme Louveaux, François Horlin, Angélique Drémeau, Patrick Héas, Cédric Herzet, Vincent Duval, Gabriel Peyré, Alhussein Fawzi, Mike E. Davies, Nicolas Gillis, Stephen A. Vavasis, Charles Soussen, Luc Le Magoarou, Jingwei Liang, Jalal Fadili, Antoine Liutkus, David Martina, Sylvain Gigan, Laurent Daudet, Mauro Maggioni, Stanislav Minsker, Nate Strawn, C. Mory, Fred Maurice Ngolè Mboula, Jean-Luc Starck, Ignace Loris, Samuel Vaiter, Mohammad Golbabaee, Dejan Vukobratovic:
Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14). CoRR abs/1410.0719 (2014) - 2013
- [j1]Samuel Vaiter, Gabriel Peyré, Charles Dossal, Jalal Fadili:
Robust Sparse Analysis Regularization. IEEE Trans. Inf. Theory 59(4): 2001-2016 (2013) - [i6]Mohamed-Jalal Fadili, Gabriel Peyré, Samuel Vaiter, Charles-Alban Deledalle, Joseph Salmon:
Stable Recovery with Analysis Decomposable Priors. CoRR abs/1304.4407 (2013) - [i5]Samuel Vaiter, Gabriel Peyré, Jalal Fadili:
Robust Polyhedral Regularization. CoRR abs/1304.6033 (2013) - [i4]Samuel Vaiter, Mohammad Golbabaee, Jalal Fadili, Gabriel Peyré:
Model Selection with Piecewise Regular Gauges. CoRR abs/1307.2342 (2013) - 2012
- [c1]Charles-Alban Deledalle, Samuel Vaiter, Gabriel Peyré, Jalal Fadili, Charles Dossal:
Unbiased risk estimation for sparse analysis regularization. ICIP 2012: 3053-3056 - [i3]Charles-Alban Deledalle, Samuel Vaiter, Gabriel Peyré, Jalal Fadili, Charles Dossal:
Risk estimation for matrix recovery with spectral regularization. CoRR abs/1205.1482 (2012) - [i2]Samuel Vaiter, Charles-Alban Deledalle, Gabriel Peyré, Jalal Fadili, Charles Dossal:
The degrees of freedom of the Group Lasso for a General Design. CoRR abs/1212.6478 (2012) - 2011
- [i1]Samuel Vaiter, Gabriel Peyré, Charles Dossal, Jalal Fadili:
Robust Sparse Analysis Regularization. CoRR abs/1109.6222 (2011)
Coauthor Index
aka: Jalal Fadili
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:16 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint