default search action
Kim-Chuan Toh
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j116]Yangjing Zhang, Ying Cui, Bodhisattva Sen, Kim-Chuan Toh:
On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture Models. J. Mach. Learn. Res. 25: 8:1-8:46 (2024) - [j115]Nachuan Xiao, Xiaoyin Hu, Xin Liu, Kim-Chuan Toh:
Adam-family Methods for Nonsmooth Optimization with Convergence Guarantees. J. Mach. Learn. Res. 25: 48:1-48:53 (2024) - [j114]Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, Shuicheng Yan:
Win: Weight-Decay-Integrated Nesterov Acceleration for Faster Network Training. J. Mach. Learn. Res. 25: 83:1-83:74 (2024) - [j113]Lei Yang, Ling Liang, Hong T. M. Chu, Kim-Chuan Toh:
A Corrected Inexact Proximal Augmented Lagrangian Method with a Relative Error Criterion for a Class of Group-Quadratic Regularized Optimal Transport Problems. J. Sci. Comput. 99(3): 79 (2024) - [j112]Tianyun Tang, Kim-Chuan Toh:
A Feasible Method for Solving an SDP Relaxation of the Quadratic Knapsack Problem. Math. Oper. Res. 49(1): 19-39 (2024) - [j111]Nachuan Xiao, Xin Liu, Kim-Chuan Toh:
Dissolving Constraints for Riemannian Optimization. Math. Oper. Res. 49(1): 366-397 (2024) - [j110]Tianyun Tang, Kim-Chuan Toh:
Solving graph equipartition SDPs on an algebraic variety. Math. Program. 204(1): 299-347 (2024) - [j109]Tianyun Tang, Kim-Chuan Toh:
Self-adaptive ADMM for semi-strongly convex problems. Math. Program. Comput. 16(1): 113-150 (2024) - [j108]Meixia Lin, Yancheng Yuan, Defeng Sun, Kim-Chuan Toh:
A highly efficient algorithm for solving exclusive lasso problems. Optim. Methods Softw. 39(3): 489-518 (2024) - [j107]Yangjing Zhang, Kim-Chuan Toh, Defeng Sun:
Learning graph Laplacian with MCP. Optim. Methods Softw. 39(3): 569-600 (2024) - [j106]Tianyun Tang, Kim-Chuan Toh:
A Feasible Method for General Convex Low-Rank SDP Problems. SIAM J. Optim. 34(3): 2169-2200 (2024) - [j105]Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye:
A Riemannian Dimension-Reduced Second-Order Method with Application in Sensor Network Localization. SIAM J. Sci. Comput. 46(3): 2025- (2024) - [c4]Anh Duc Nguyen, Tuan Dung Nguyen, Quang Minh Nguyen, Hoang H. Nguyen, Lam M. Nguyen, Kim-Chuan Toh:
On Partial Optimal Transport: Revising the Infeasibility of Sinkhorn and Efficient Gradient Methods. AAAI 2024: 8090-8098 - [i22]Ling Liang, Kim-Chuan Toh, Jia-Jie Zhu:
An Inexact Halpern Iteration with Application to Distributionally Robust Optimization. CoRR abs/2402.06033 (2024) - [i21]Nachuan Xiao, Kuangyu Ding, Xiaoyin Hu, Kim-Chuan Toh:
Developing Lagrangian-based Methods for Nonsmooth Nonconvex Optimization. CoRR abs/2404.09438 (2024) - [i20]Ling Liang, Qiyuan Pang, Kim-Chuan Toh, Haizhao Yang:
Nesterov's Accelerated Jacobi-Type Methods for Large-scale Symmetric Positive Semidefinite Linear Systems. CoRR abs/2407.03272 (2024) - [i19]Ling Liang, Kim-Chuan Toh, Haizhao Yang:
Vertex Exchange Method for a Class of Quadratic Programming Problems. CoRR abs/2407.03294 (2024) - [i18]Xingyu Xie, Zhijie Lin, Kim-Chuan Toh, Pan Zhou:
LoCo: Low-Bit Communication Adaptor for Large-scale Model Training. CoRR abs/2407.04480 (2024) - [i17]Xingyu Xie, Kuangyu Ding, Shuicheng Yan, Kim-Chuan Toh, Tianwen Wei:
Optimization Hyper-parameter Laws for Large Language Models. CoRR abs/2409.04777 (2024) - [i16]Jingyang Li, Jiachun Pan, Vincent Y. F. Tan, Kim-Chuan Toh, Pan Zhou:
Towards Understanding Why FixMatch Generalizes Better Than Supervised Learning. CoRR abs/2410.11206 (2024) - 2023
- [j104]Hong T. M. Chu, Ling Liang, Kim-Chuan Toh, Lei Yang:
An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems. Comput. Optim. Appl. 85(1): 107-146 (2023) - [j103]Kuangyu Ding, Xin Yee Lam, Kim-Chuan Toh:
On proximal augmented Lagrangian based decomposition methods for dual block-angular convex composite programming problems. Comput. Optim. Appl. 86(1): 117-161 (2023) - [j102]Heng Yang, Ling Liang, Luca Carlone, Kim-Chuan Toh:
An inexact projected gradient method with rounding and lifting by nonlinear programming for solving rank-one semidefinite relaxation of polynomial optimization. Math. Program. 201(1): 409-472 (2023) - [j101]Xiaoyin Hu, Nachuan Xiao, Xin Liu, Kim-Chuan Toh:
An Improved Unconstrained Approach for Bilevel Optimization. SIAM J. Optim. 33(4): 2801-2829 (2023) - [i15]Nachuan Xiao, Xiaoyin Hu, Xin Liu, Kim-Chuan Toh:
Adam-family Methods for Nonsmooth Optimization with Convergence Guarantees. CoRR abs/2305.03938 (2023) - [i14]Kuangyu Ding, Jingyang Li, Kim-Chuan Toh:
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning. CoRR abs/2306.14522 (2023) - [i13]Nachuan Xiao, Xiaoyin Hu, Kim-Chuan Toh:
Convergence Guarantees for Stochastic Subgradient Methods in Nonsmooth Nonconvex Optimization. CoRR abs/2307.10053 (2023) - [i12]Kuangyu Ding, Nachuan Xiao, Kim-Chuan Toh:
Adam-family Methods with Decoupled Weight Decay in Deep Learning. CoRR abs/2310.08858 (2023) - [i11]Anh Duc Nguyen, Tuan Dung Nguyen, Quang Minh Nguyen, Hoang H. Nguyen, Lam M. Nguyen, Kim-Chuan Toh:
On Partial Optimal Transport: Revising the Infeasibility of Sinkhorn and Efficient Gradient Methods. CoRR abs/2312.13970 (2023) - 2022
- [j100]Hong T. M. Chu, Kim-Chuan Toh, Yangjing Zhang:
On Regularized Square-root Regression Problems: Distributionally Robust Interpretation and Fast Computations. J. Mach. Learn. Res. 23: 308:1-308:39 (2022) - [j99]Quoc Tran-Dinh, Ling Liang, Kim-Chuan Toh:
A New Homotopy Proximal Variable-Metric Framework for Composite Convex Minimization. Math. Oper. Res. 47(1): 508-539 (2022) - [j98]Ying Cui, Ling Liang, Defeng Sun, Kim-Chuan Toh:
On Degenerate Doubly Nonnegative Projection Problems. Math. Oper. Res. 47(3): 2219-2239 (2022) - [j97]Sunyoung Kim, Masakazu Kojima, Kim-Chuan Toh:
Doubly nonnegative relaxations for quadratic and polynomial optimization problems with binary and box constraints. Math. Program. 193(2): 761-787 (2022) - [j96]Meixia Lin, Defeng Sun, Kim-Chuan Toh:
An augmented Lagrangian method with constraint generation for shape-constrained convex regression problems. Math. Program. Comput. 14(2): 223-270 (2022) - [j95]Lei Yang, Kim-Chuan Toh:
Bregman Proximal Point Algorithm Revisited: A New Inexact Version and Its Inertial Variant. SIAM J. Optim. 32(3): 1523-1554 (2022) - [j94]Wenjing Li, Wei Bian, Kim-Chuan Toh:
Difference-of-Convex Algorithms for a Class of Sparse Group $\ell_0$ Regularized Optimization Problems. SIAM J. Optim. 32(3): 1614-1641 (2022) - [j93]Yancheng Yuan, Tsung-Hui Chang, Defeng Sun, Kim-Chuan Toh:
A Dimension Reduction Technique for Large-Scale Structured Sparse Optimization Problems with Application to Convex Clustering. SIAM J. Optim. 32(3): 2294-2318 (2022) - [j92]Ling Liang, Xudong Li, Defeng Sun, Kim-Chuan Toh:
QPPAL: A Two-phase Proximal Augmented Lagrangian Method for High-dimensional Convex Quadratic Programming Problems. ACM Trans. Math. Softw. 48(3): 33:1-33:27 (2022) - [i10]Ching-pei Lee, Ling Liang, Tianyun Tang, Kim-Chuan Toh:
Escaping Spurious Local Minima of Low-Rank Matrix Factorization Through Convex Lifting. CoRR abs/2204.14067 (2022) - [i9]Ngoc Hoang Anh Mai, Victor Magron, Jean-Bernard Lasserre, Kim-Chuan Toh:
Tractable hierarchies of convex relaxations for polynomial optimization on the nonnegative orthant. CoRR abs/2209.06175 (2022) - [i8]Nachuan Xiao, Xiaoyin Hu, Xin Liu, Kim-Chuan Toh:
CDOpt: A Python Package for a Class of Riemannian Optimization. CoRR abs/2212.02698 (2022) - 2021
- [j91]Rui Wang, Naihua Xiu, Kim-Chuan Toh:
Subspace quadratic regularization method for group sparse multinomial logistic regression. Comput. Optim. Appl. 79(3): 531-559 (2021) - [j90]Xin Yee Lam, Defeng Sun, Kim-Chuan Toh:
Semi-proximal Augmented Lagrangian-Based Decomposition Methods for Primal Block-Angular Convex Composite Quadratic Conic Programming Problems. INFORMS J. Optim. 3(3): 254-277 (2021) - [j89]Defeng Sun, Kim-Chuan Toh, Yancheng Yuan:
Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm. J. Mach. Learn. Res. 22: 9:1-9:32 (2021) - [j88]Lei Yang, Jia Li, Defeng Sun, Kim-Chuan Toh:
A Fast Globally Linearly Convergent Algorithm for the Computation of Wasserstein Barycenters. J. Mach. Learn. Res. 22: 21:1-21:37 (2021) - [j87]Liang Chen, Xudong Li, Defeng Sun, Kim-Chuan Toh:
On the equivalence of inexact proximal ALM and ADMM for a class of convex composite programming. Math. Program. 185(1-2): 111-161 (2021) - [j86]Sunyoung Kim, Masakazu Kojima, Kim-Chuan Toh:
A Newton-bracketing method for a simple conic optimization problem. Optim. Methods Softw. 36(2-3): 371-388 (2021) - [j85]Ling Liang, Defeng Sun, Kim-Chuan Toh:
An Inexact Augmented Lagrangian Method for Second-Order Cone Programming with Applications. SIAM J. Optim. 31(3): 1748-1773 (2021) - [j84]Ning Zhang, Yangjing Zhang, Defeng Sun, Kim-Chuan Toh:
An Efficient Linearly Convergent Regularized Proximal Point Algorithm for Fused Multiple Graphical Lasso Problems. SIAM J. Math. Data Sci. 3(2): 524-543 (2021) - [i7]Heng Yang, Ling Liang, Kim-Chuan Toh, Luca Carlone:
STRIDE along Spectrahedral Vertices for Solving Large-Scale Rank-One Semidefinite Relaxations. CoRR abs/2105.14033 (2021) - 2020
- [j83]Sunyoung Kim, Masakazu Kojima, Kim-Chuan Toh:
Doubly nonnegative relaxations are equivalent to completely positive reformulations of quadratic optimization problems with block-clique graph structures. J. Glob. Optim. 77(3): 513-541 (2020) - [j82]Yangjing Zhang, Ning Zhang, Defeng Sun, Kim-Chuan Toh:
An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems. Math. Program. 179(1): 223-263 (2020) - [j81]Xudong Li, Defeng Sun, Kim-Chuan Toh:
On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope. Math. Program. 179(1): 419-446 (2020) - [j80]Defeng Sun, Kim-Chuan Toh, Yancheng Yuan, Xin-Yuan Zhao:
SDPNAL+: A Matlab software for semidefinite programming with bound constraints (version 1.0). Optim. Methods Softw. 35(1): 87-115 (2020) - [j79]Chao Ding, Defeng Sun, Jie Sun, Kim-Chuan Toh:
Spectral Operators of Matrices: Semismoothness and Characterizations of the Generalized Jacobian. SIAM J. Optim. 30(1): 630-659 (2020) - [j78]Sunyoung Kim, Masakazu Kojima, Kim-Chuan Toh:
A Geometrical Analysis on Convex Conic Reformulations of Quadratic and Polynomial Optimization Problems. SIAM J. Optim. 30(2): 1251-1273 (2020) - [j77]Yangjing Zhang, Ning Zhang, Defeng Sun, Kim-Chuan Toh:
A Proximal Point Dual Newton Algorithm for Solving Group Graphical Lasso Problems. SIAM J. Optim. 30(3): 2197-2220 (2020) - [j76]Xudong Li, Defeng Sun, Kim-Chuan Toh:
An Asymptotically Superlinearly Convergent Semismooth Newton Augmented Lagrangian Method for Linear Programming. SIAM J. Optim. 30(3): 2410-2440 (2020) - [i6]Yangjing Zhang, Kim-Chuan Toh, Defeng Sun:
Learning Graph Laplacian with MCP. CoRR abs/2010.11559 (2020)
2010 – 2019
- 2019
- [j75]Ziyan Luo, Defeng Sun, Kim-Chuan Toh, Naihua Xiu:
Solving the OSCAR and SLOPE Models Using a Semismooth Newton-Based Augmented Lagrangian Method. J. Mach. Learn. Res. 20: 106:1-106:25 (2019) - [j74]Xudong Li, Defeng Sun, Kim-Chuan Toh:
A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications. Math. Program. 175(1-2): 395-418 (2019) - [j73]Ying Cui, Defeng Sun, Kim-Chuan Toh:
On the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programming. Math. Program. 178(1-2): 381-415 (2019) - [j72]Meixia Lin, Yong-Jin Liu, Defeng Sun, Kim-Chuan Toh:
Efficient Sparse Semismooth Newton Methods for the Clustered Lasso Problem. SIAM J. Optim. 29(3): 2026-2052 (2019) - [j71]Ying Cui, Defeng Sun, Kim-Chuan Toh:
Computing the Best Approximation over the Intersection of a Polyhedral Set and the Doubly Nonnegative Cone. SIAM J. Optim. 29(4): 2785-2813 (2019) - [j70]Shenglong Hu, Defeng Sun, Kim-Chuan Toh:
Best Nonnegative Rank-One Approximations of Tensors. SIAM J. Matrix Anal. Appl. 40(4): 1527-1554 (2019) - [j69]Naoki Ito, Sunyoung Kim, Masakazu Kojima, Akiko Takeda, Kim-Chuan Toh:
Algorithm 996: BBCPOP: A Sparse Doubly Nonnegative Relaxation of Polynomial Optimization Problems With Binary, Box, and Complementarity Constraints. ACM Trans. Math. Softw. 45(3): 34:1-34:26 (2019) - [i5]Yancheng Yuan, Meixia Lin, Defeng Sun, Kim-Chuan Toh:
On the Closed-form Proximal Mapping and Efficient Algorithms for Exclusive Lasso Models. CoRR abs/1902.00151 (2019) - [i4]Peipei Tang, Chengjing Wang, Defeng Sun, Kim-Chuan Toh:
A sparse semismooth Newton based proximal majorization-minimization algorithm for nonconvex square-root-loss regression problems. CoRR abs/1903.11460 (2019) - 2018
- [j68]Naoki Ito, Sunyoung Kim, Masakazu Kojima, Akiko Takeda, Kim-Chuan Toh:
Equivalences and differences in conic relaxations of combinatorial quadratic optimization problems. J. Glob. Optim. 72(4): 619-653 (2018) - [j67]Ethan X. Fang, Han Liu, Kim-Chuan Toh, Wen-Xin Zhou:
Max-norm optimization for robust matrix recovery. Math. Program. 167(1): 5-35 (2018) - [j66]Chao Ding, Defeng Sun, Jie Sun, Kim-Chuan Toh:
Spectral operators of matrices. Math. Program. 168(1-2): 509-531 (2018) - [j65]Tillmann Weißer, Jean B. Lasserre, Kim-Chuan Toh:
Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity. Math. Program. Comput. 10(1): 1-32 (2018) - [j64]Xudong Li, Defeng Sun, Kim-Chuan Toh:
QSDPNAL: a two-phase augmented Lagrangian method for convex quadratic semidefinite programming. Math. Program. Comput. 10(4): 703-743 (2018) - [j63]Zhuwen Li, Loong-Fah Cheong, Shuoguang Yang, Kim-Chuan Toh:
Simultaneous Clustering and Model Selection: Algorithm, Theory and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 40(8): 1964-1978 (2018) - [j62]Xudong Li, Defeng Sun, Kim-Chuan Toh:
A Highly Efficient Semismooth Newton Augmented Lagrangian Method for Solving Lasso Problems. SIAM J. Optim. 28(1): 433-458 (2018) - [j61]Karthik Natarajan, Dongjian Shi, Kim-Chuan Toh:
Bounds for Random Binary Quadratic Programs. SIAM J. Optim. 28(1): 671-692 (2018) - [j60]Xudong Li, Defeng Sun, Kim-Chuan Toh:
On Efficiently Solving the Subproblems of a Level-Set Method for Fused Lasso Problems. SIAM J. Optim. 28(2): 1842-1866 (2018) - [c3]Yancheng Yuan, Defeng Sun, Kim-Chuan Toh:
An Efficient Semismooth Newton Based Algorithm for Convex Clustering. ICML 2018: 5704-5712 - [i3]Yancheng Yuan, Defeng Sun, Kim-Chuan Toh:
An Efficient Semismooth Newton Based Algorithm for Convex Clustering. CoRR abs/1802.07091 (2018) - [i2]Defeng Sun, Kim-Chuan Toh, Yancheng Yuan:
Convex Clustering: Model, Theoretical Guarantee and Efficient Algorithm. CoRR abs/1810.02677 (2018) - 2017
- [j59]Liang Chen, Defeng Sun, Kim-Chuan Toh:
A note on the convergence of ADMM for linearly constrained convex optimization problems. Comput. Optim. Appl. 66(2): 327-343 (2017) - [j58]Naohiko Arima, Sunyoung Kim, Masakazu Kojima, Kim-Chuan Toh:
A robust Lagrangian-DNN method for a class of quadratic optimization problems. Comput. Optim. Appl. 66(3): 453-479 (2017) - [j57]Jean B. Lasserre, Kim-Chuan Toh, Shouguang Yang:
A bounded degree SOS hierarchy for polynomial optimization. EURO J. Comput. Optim. 5(1-2): 87-117 (2017) - [j56]Naoki Ito, Akiko Takeda, Kim-Chuan Toh:
A Unified Formulation and Fast Accelerated Proximal Gradient Method for Classification. J. Mach. Learn. Res. 18: 16:1-16:49 (2017) - [j55]Liang Chen, Defeng Sun, Kim-Chuan Toh:
An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming. Math. Program. 161(1-2): 237-270 (2017) - 2016
- [j54]Ying Cui, Xudong Li, Defeng Sun, Kim-Chuan Toh:
On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions. J. Optim. Theory Appl. 169(3): 1013-1041 (2016) - [j53]Xudong Li, Defeng Sun, Kim-Chuan Toh:
A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1-2): 333-373 (2016) - [j52]Caihua Chen, Yong-Jin Liu, Defeng Sun, Kim-Chuan Toh:
A semismooth Newton-CG based dual PPA for matrix spectral norm approximation problems. Math. Program. 155(1-2): 435-470 (2016) - [j51]Sunyoung Kim, Masakazu Kojima, Kim-Chuan Toh:
A Lagrangian-DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems. Math. Program. 156(1-2): 161-187 (2016) - [j50]Min Li, Defeng Sun, Kim-Chuan Toh:
A Majorized ADMM with Indefinite Proximal Terms for Linearly Constrained Convex Composite Optimization. SIAM J. Optim. 26(2): 922-950 (2016) - [j49]Defeng Sun, Kim-Chuan Toh, Liuqin Yang:
An Efficient Inexact ABCD Method for Least Squares Semidefinite Programming. SIAM J. Optim. 26(2): 1072-1100 (2016) - [c2]Zhuwen Li, Shuoguang Yang, Loong-Fah Cheong, Kim-Chuan Toh:
Simultaneous Clustering and Model Selection for Tensor Affinities. CVPR 2016: 5347-5355 - 2015
- [j48]Min Li, Defeng Sun, Kim-Chuan Toh:
A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block. Asia Pac. J. Oper. Res. 32(4): 1550024:1-1550024:19 (2015) - [j47]Jiming Peng, Tao Zhu, Hezhi Luo, Kim-Chuan Toh:
Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting. Comput. Optim. Appl. 60(1): 171-198 (2015) - [j46]Yu-Xiang Wang, Choon Meng Lee, Loong-Fah Cheong, Kim-Chuan Toh:
Practical Matrix Completion and Corruption Recovery Using Proximal Alternating Robust Subspace Minimization. Int. J. Comput. Vis. 111(3): 315-344 (2015) - [j45]Liuqin Yang, Defeng Sun, Kim-Chuan Toh:
SDPNAL \(+\) : a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7(3): 331-366 (2015) - [j44]Defeng Sun, Kim-Chuan Toh, Liuqin Yang:
A Convergent 3-Block SemiProximal Alternating Direction Method of Multipliers for Conic Programming with 4-Type Constraints. SIAM J. Optim. 25(2): 882-915 (2015) - 2014
- [j43]Karthik Natarajan, Dongjian Shi, Kim-Chuan Toh:
A Probabilistic Model for Minmax Regret in Combinatorial Optimization. Oper. Res. 62(1): 160-181 (2014) - [j42]Zheng Gong, Zuowei Shen, Kim-Chuan Toh:
Image Restoration with Mixed or Unknown Noises. Multiscale Model. Simul. 12(2): 458-487 (2014) - [j41]Chao Ding, Defeng Sun, Kim-Chuan Toh:
An introduction to a class of matrix cone programming. Math. Program. 144(1-2): 141-179 (2014) - [j40]Kaifeng Jiang, Defeng Sun, Kim-Chuan Toh:
A partial proximal point algorithm for nuclear norm regularized matrix least squares problems. Math. Program. Comput. 6(3): 281-325 (2014) - [j39]Bin Wu, Chao Ding, Defeng Sun, Kim-Chuan Toh:
On the Moreau-Yosida Regularization of the Vector k-Norm Related Functions. SIAM J. Optim. 24(2): 766-794 (2014) - 2013
- [j38]ZhiZhuo Zhang, Guoliang Li, Kim-Chuan Toh, Wing-Kin Sung:
3D Chromosome Modeling with Semi-Definite Programming and Hi-C Data. J. Comput. Biol. 20(11): 831-846 (2013) - [j37]Junfeng Yang, Defeng Sun, Kim-Chuan Toh:
A Proximal Point Algorithm for Log-Determinant Optimization with Group Lasso Regularization. SIAM J. Optim. 23(2): 857-893 (2013) - [j36]Xuan Vinh Doan, Kim-Chuan Toh, Stephen A. Vavasis:
A Proximal Point Algorithm for Sequential Feature Extraction Applications. SIAM J. Sci. Comput. 35(1) (2013) - [c1]ZhiZhuo Zhang, Guoliang Li, Kim-Chuan Toh, Wing-Kin Sung:
Inference of Spatial Organizations of Chromosomes Using Semi-definite Embedding Approach and Hi-C Data. RECOMB 2013: 317-332 - [p1]Xingyuan Fang, Kim-Chuan Toh:
Using a Distributed SDP Approach to Solve Simulated Protein Molecular Conformation Problems. Distance Geometry 2013: 351-376 - [i1]Yu-Xiang Wang, Choon Meng Lee, Loong-Fah Cheong, Kim-Chuan Toh:
Practical Matrix Completion and Corruption Recovery using Proximal Alternating Robust Subspace Minimization. CoRR abs/1309.1539 (2013) - 2012
- [j35]Yong-Jin Liu, Defeng Sun, Kim-Chuan Toh:
An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Program. 133(1-2): 399-436 (2012) - [j34]Kaifeng Jiang, Defeng Sun, Kim-Chuan Toh:
An Inexact Accelerated Proximal Gradient Method for Large Scale Linearly Constrained Convex SDP. SIAM J. Optim. 22(3): 1042-1064 (2012) - 2011
- [j33]Sangwoon Yun, Kim-Chuan Toh:
A coordinate gradient descent method for ℓ1-regularized convex minimization. Comput. Optim. Appl. 48(2): 273-307 (2011) - [j32]Sangwoon Yun, Paul Tseng, Kim-Chuan Toh:
A block coordinate gradient descent method for regularized convex separable optimization and covariance selection. Math. Program. 129(2): 331-355 (2011) - [j31]Zuowei Shen, Kim-Chuan Toh, Sangwoon Yun:
An Accelerated Proximal Gradient Algorithm for Frame-Based Image Restoration via the Balanced Approach. SIAM J. Imaging Sci. 4(2): 573-596 (2011) - 2010
- [j30]Xinwei Liu, Kim-Chuan Toh, Gongyun Zhao:
On the implementation of a log-barrier progressive hedging method for multistage stochastic programs. J. Comput. Appl. Math. 234(2): 579-592 (2010) - [j29]Lu Li, Kim-Chuan Toh:
An inexact interior point method for L 1-regularized sparse covariance selection. Math. Program. Comput. 2(3-4): 291-315 (2010) - [j28]Xin-Yuan Zhao, Defeng Sun, Kim-Chuan Toh:
A Newton-CG Augmented Lagrangian Method for Semidefinite Programming. SIAM J. Optim. 20(4): 1737-1765 (2010) - [j27]Chengjing Wang, Defeng Sun, Kim-Chuan Toh:
Solving Log-Determinant Optimization Problems by a Newton-CG Primal Proximal Point Algorithm. SIAM J. Optim. 20(6): 2994-3013 (2010)
2000 – 2009
- 2009
- [j26]Ngai-Hang Z. Leung, Kim-Chuan Toh:
An SDP-Based Divide-and-Conquer Algorithm for Large-Scale Noisy Anchor-Free Graph Realization. SIAM J. Sci. Comput. 31(6): 4351-4372 (2009) - 2008
- [j25]Kim-Chuan Toh:
An inexact primal-dual path following algorithm for convex quadratic SDP. Math. Program. 112(1): 221-254 (2008) - [j24]Pratik Biswas, Kim-Chuan Toh, Yinyu Ye:
A Distributed SDP Approach for Large-Scale Noisy Anchor-Free Graph Realization with Applications to Molecular Conformation. SIAM J. Sci. Comput. 30(3): 1251-1277 (2008) - 2007
- [j23]Joo-Siong Chai, Kim-Chuan Toh:
Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming. Comput. Optim. Appl. 36(2-3): 221-247 (2007) - [j22]Robert M. Freund, Fernando Ordóñez, Kim-Chuan Toh:
Behavioral measures and their correlation with IPM iteration counts on semi-definite programming problems. Math. Program. 109(2-3): 445-475 (2007) - 2006
- [j21]Joo-Siong Chai, Kim-Chuan Toh:
Computation of condition numbers for linear programming problems using Peña's method. Optim. Methods Softw. 21(3): 419-443 (2006) - [j20]Zhi Cai, Kim-Chuan Toh:
Solving Second Order Cone Programming via a Reduced Augmented System Approach. SIAM J. Optim. 17(3): 711-737 (2006) - [j19]Pratik Biswas, Tzu-Chen Liang, Kim-Chuan Toh, Yinyu Ye, Ta-Chung Wang:
Semidefinite Programming Approaches for Sensor Network Localization With Noisy Distance Measurements. IEEE Trans Autom. Sci. Eng. 3(4): 360-371 (2006) - 2005
- [j18]Guanglu Zhou, Kim-Chuan Toh, Jie Sun:
Efficient Algorithms for the Smallest Enclosing Ball Problem. Comput. Optim. Appl. 30(2): 147-160 (2005) - 2004
- [j17]Guanglu Zhou, Kim-Chuan Toh, Gongyun Zhao:
Convergence Analysis of an Infeasible Interior Point Algorithm Based on a Regularized Central Path for Linear Complementarity Problems. Comput. Optim. Appl. 27(3): 269-283 (2004) - [j16]Guanglu Zhou, Kim-Chuan Toh:
Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming. Math. Program. 99(2): 261-282 (2004) - [j15]Kim-Chuan Toh:
Solving Large Scale Semidefinite Programs via an Iterative Solver on the Augmented Systems. SIAM J. Optim. 14(3): 670-698 (2004) - 2003
- [j14]Reha H. Tütüncü, Kim-Chuan Toh, Michael J. Todd:
Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95(2): 189-217 (2003) - 2002
- [j13]Kim-Chuan Toh:
A Note on the Calculation of Step-Lengths in Interior-Point Methods for Semidefinite Programming. Comput. Optim. Appl. 21(3): 301-310 (2002) - [j12]Jie Sun, Kim-Chuan Toh, Gongyun Zhao:
An Analytic Center Cutting Plane Method for Semidefinite Feasibility Problems. Math. Oper. Res. 27(2): 332-346 (2002) - [j11]Kim-Chuan Toh, Masakazu Kojima:
Solving Some Large Scale Semidefinite Programs via the Conjugate Residual Method. SIAM J. Optim. 12(3): 669-691 (2002) - [j10]Kim-Chuan Toh, Gongyun Zhao, Jie Sun:
A Multiple-Cut Analytic Center Cutting Plane Method for Semidefinite Feasibility Problems. SIAM J. Optim. 12(4): 1126-1146 (2002) - 2001
- [j9]Amos Ron, Zuowei Shen, Kim-Chuan Toh:
Computing the Sobolev Regularity of Refinable Functions by the Arnoldi Method. SIAM J. Matrix Anal. Appl. 23(1): 57-76 (2001) - 2000
- [j8]Kim-Chuan Toh:
Some New Search Directions for Primal-Dual Interior Point Methods in Semidefinite Programming. SIAM J. Optim. 11(1): 223-242 (2000)
1990 – 1999
- 1999
- [j7]Kim-Chuan Toh:
Primal-Dual Path-Following Algorithms for Determinant Maximization Problems With Linear Matrix Inequalities. Comput. Optim. Appl. 14(3): 309-330 (1999) - [j6]Kim-Chuan Toh, Lloyd N. Trefethen:
The Kreiss Matrix Theorem on a General Complex Domain. SIAM J. Matrix Anal. Appl. 21(1): 145-165 (1999) - 1998
- [j5]Michael J. Todd, Kim-Chuan Toh, Reha H. Tütüncü:
On the Nesterov-Todd Direction in Semidefinite Programming. SIAM J. Optim. 8(3): 769-796 (1998) - [j4]Kim-Chuan Toh, Lloyd N. Trefethen:
The Chebyshev Polynomials of a Matrix. SIAM J. Matrix Anal. Appl. 20(2): 400-419 (1998) - [j3]Tobin A. Driscoll, Kim-Chuan Toh, Lloyd N. Trefethen:
From Potential Theory to Matrix Iterations in Six Steps. SIAM Rev. 40(3): 547-578 (1998) - 1997
- [j2]Kim-Chuan Toh:
GMRES vs. Ideal GMRES. SIAM J. Matrix Anal. Appl. 18(1): 30-36 (1997) - 1996
- [j1]Kim-Chuan Toh, Lloyd N. Trefethen:
Calculation of Pseudospectra by the Arnoldi Iteration. SIAM J. Sci. Comput. 17(1): 1-15 (1996)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-02 22:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint