default search action
ESANN 2013: Bruges, Belgium
- 21st European Symposium on Artificial Neural Networks, ESANN 2013, Bruges, Belgium, April 24-26, 2013. 2013
Machine Learning Methods for Processing and Analysis of Hyperspectral Data
- Thomas Villmann, Marika Kästner, Andreas Backhaus, Udo Seiffert:
Processing Hyperspectral Data in Machine Learning. - Michele Volpi, Giona Matasci, Mikhail F. Kanevski, Devis Tuia:
Multi-view feature extraction for hyperspectral image classification. - Martin Riedel, Fabrice Rossi, Marika Kästner, Thomas Villmann:
Regularization in relevance learning vector quantization using l1-norms.
Recurrent networks and modeling
- Kevin Swingler, Leslie S. Smith:
Mixed order associative networks for function approximation, optimisation and sampling. - Stefan Glüge, Ronald Böck, Andreas Wendemuth:
Auto-encoder pre-training of segmented-memory recurrent neural networks. - Levy Boccato, Daniel G. Silva, Denis G. Fantinato, Kenji Nose Filho, Rafael Ferrari, Romis Attux, Aline Neves, Jugurta Montalvão, João Marcos Travassos Romano:
Error entropy criterion in echo state network training. - Martin Meier, Robert Haschke, Helge J. Ritter:
Perceptual grouping through competition in coupled oscillator networks. - Niels Bloom, Mariët Theune, Franciska de Jong:
Using Wikipedia with associative networks for document classification. - Galina V. Veres, Zoheir A. Sabeur:
Automated operational states detection for drilling systems control in critical conditions. - Li Guo, Zhijun Yang, Qingbao Zhu:
Analysis of Synaptic Weight Distribution in an Izhikevich Network. - Gaetano Liborio Aiello, Valentino Romano:
Percolation model of axon guidance. - Wen-Jyi Hwang, Hao Chen:
Efficient VLSI Architecture for Spike Sorting Based on Generalized Hebbian Algorithm.
Dimensionality reduction
- Marc Strickert, Kerstin Bunte:
Soft rank neighbor embeddings. - Madalina Olteanu, Nathalie Villa-Vialaneix, Christine Cierco-Ayrolles:
Multiple Kernel Self-Organizing Maps. - Xibin Zhu, Frank-Michael Schleif, Barbara Hammer:
Semi-Supervised Vector Quantization for proximity data. - Francisco J. García-Fernández, Michel Verleysen, John Aldo Lee, Ignacio Díaz Blanco:
Sensitivity to parameter and data variations in dimensionality reduction techniques.
Image, signal and time series analysis
- Augustin Lefèvre, François Glineur, Pierre-Antoine Absil:
A nuclear-norm based convex formulation for informed source separation. - Aurélien Hazan, Kurosh Madani:
Frequency-Dependent Peak-Over-Threshold algorithm for fault detection in the spectral domain. - Fabrice Rossi, Pierre Latouche:
Activity Date Estimation in Timestamped Interaction Networks. - Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban:
Novelty detection in image recognition using IRF Neural Networks properties. - Mandy Lange, Michael Biehl, Thomas Villmann:
Non-Euclidean independent component analysis and Oja's learning. - Andrés Marino Álvarez-Meza, Carlos Daniel Acosta-Medina, Germán Castellanos-Domínguez:
Automatic Singular Spectrum Analysis for Time-Series Decomposition. - Valeri Tsatsishvili, Fengyu Cong, Tuomas Puoliväli, Vinoo Alluri, Petri Toiviainen, Asoke K. Nandi, Elvira Brattico, Tapani Ristaniemi:
Dimension reduction for individual ica to decompose FMRI during real-world experiences: principal component analysis vs. canonical correlation analysis. - Fernando Mateo, Juan José Carrasco, Mónica Millán-Giraldo, Abderrahim Sellami, Pablo Escandell-Montero, José María Martínez-Martínez, Emilio Soria-Olivas:
Machine Learning Techniques for Short-Term Electric Power Demand Prediction. - Levente Orbán, Sylvain Chartier:
Unsupervised non-linear neural networks capture aspects of floral choice behaviour.
Feature selection
- Maria Fernanda B. Wanderley, Vincent Gardeux, René Natowicz, Antônio de Pádua Braga:
GA-KDE-Bayes: an evolutionary wrapper method based on non-parametric density estimation applied to bioinformatics problems. - Gauthier Doquire, Benoît Frénay, Michel Verleysen:
Risk Estimation and Feature Selection. - Mark J. Embrechts, Jonathan D. Linton, Jorge M. Santos:
Random Brains: An ensemble method for feature selection with neural networks. - Verónica Bolón-Canedo, Noelia Sánchez-Maroño, Amparo Alonso-Betanzos:
A distributed wrapper approach for feature selection. - Fernando Mateo, Mónica Millán-Giraldo, Juan José Carrasco, Enrique Montiel, José Antonio Bernabéu, José David Martín-Guerrero:
Feature Selection for Footwear Shape Estimation. - Thomas Schmid, Dorothee Günzel, Martin Bogdan:
Efficient prediction of x-axis intercepts of discrete impedance spectra. - Robert Kaltenhaeuser, Erik Schaffernicht, Frank-Florian Steege, Horst-Michael Gross:
Evolutionary computation based system decomposition with neural networks.
Reinforcement learning, control and optimization
- Emmanuel Daucé, Timothée Proix, Liva Ralaivola:
Fast online adaptivity with policy gradient: example of the BCI "P300"-speller. - Matthew Howard, Yoshihiko Nakamura:
Locally Weighted Least Squares Temporal Difference Learning. - Bastian Bischoff, Duy Nguyen-Tuong, Heiner Markert, Alois C. Knoll:
Learning control under uncertainty: A probabilistic Value-Iteration approach. - Siegmund Duell, Steffen Udluft:
Ensembles for Continuous Actions in Reinforcement Learning. - Christopher J. Gatti, Mark J. Embrechts, Jonathan D. Linton:
An empirical analysis of reinforcement learning using design of experiments. - Bastian Bischoff, Duy Nguyen-Tuong, I-Hsuan Lee, Felix Streichert, Alois C. Knoll:
Hierarchical Reinforcement Learning for Robot Navigation. - Pablo Escandell-Montero, José María Martínez-Martínez, José David Martín-Guerrero, Emilio Soria-Olivas, Juan Gómez-Sanchís:
Least-squares temporal difference learning based on extreme learning machine. - Denise Gorse:
Binary particle swarm optimisation with improved scaling behaviour. - Rafael Lima de Carvalho, Lunlong Zhong, Felipe M. G. França, Félix Mora-Camino:
Dynamic Placement with Connectivity for RSNs based on a Primal-Dual Neural Network.
Machine Learning for multimedia applications
- Philippe Henri Gosselin, David Picard:
Machine Learning and Content-Based Multimedia Retrieval. - Thomas Guthier, Steve Gerges, Volker Willert, Julian Eggert:
Learning associative spatiotemporal features with non-negative sparse coding. - Ksenia Konyushkova, Dorota Glowacka:
Content-based image retrieval with hierarchical Gaussian Process bandits with self-organizing maps.
Clustering
- Andry Njato Randriamanamihaga, Etienne Côme, Latifa Oukhellou, Gérard Govaert:
Clustering the Vélib' origin-destinations flows by means of Poisson mixture models. - Octavio Razafindramanana, Gilles Venturini:
Delaunay simplices pruning based clustering. - Johanna Baro, Etienne Côme, Patrice Aknin, Olivier Bonin:
Hierarchical and multiscale Mean Shift segmentation of population grids. - Laetitia Nouedoui, Pierre Latouche:
Bayesian non parametric inference of discrete valued networks. - Filippo Pompili, Nicolas Gillis, François Glineur, Pierre-Antoine Absil:
ONP-MF: An Orthogonal Nonnegative Matrix Factorization Algorithm with Application to Clustering. - Zalán Bodó, Lehel Csató:
Linear spectral hashing. - Diego Hernán Peluffo-Ordóñez, Andrés Eduardo Castro-Ospina, Diego Chavez-Chamorro, Carlos Daniel Acosta-Medina, Germán Castellanos-Domínguez:
Normalized cuts clustering with prior knowledge and a pre-clustering stage. - Twan van Laarhoven, Elena Marchiori:
Network community detection with edge classifiers trained on LFR graphs.
Regression and forecasting
- Armin Walter, Georgios Naros, Martin Spüler, Alireza Gharabaghi, Wolfgang Rosenstiel, Martin Bogdan:
Decoding stimulation intensity from evoked ECoG activity using support vector regression. - Andre Lemme, Klaus Neumann, René Felix Reinhart, Jochen J. Steil:
Neurally imprinted stable vector fields. - Jonas Kalderstam, Patrik Edén, Mattias Ohlsson:
Ensembles of genetically trained artificial neural networks for survival analysis. - Manuel Blum, Martin A. Riedmiller:
Optimization of Gaussian process hyperparameters using Rprop. - José Barahona da Fonseca:
Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result. - Abou Keita, Romain Hérault, Colas Calbrix, Stéphane Canu:
Detection and quantification in real-time polymerase chain reaction. - Fernando Mateo, Juan José Carrasco, Mónica Millán-Giraldo, Abderrahim Sellami, Pablo Escandell-Montero, José María Martínez-Martínez, Emilio Soria-Olivas:
Temperature Forecast in Buildings Using Machine Learning Techniques. - Patrick Kouontchou, Amaury Lendasse, Yoan Miché, Bertrand Maillet:
Forecasting Financial Markets with Classified Tactical Signals.
Developments in kernel design
- Lluís Belanche:
Developments in kernel design. - Vicent J. Ribas Ripoll, Enrique Romero, Juan Carlos Ruiz-Rodríguez, Alfredo Vellido:
A quotient basis kernel for the prediction of mortality in severe sepsis patients. - María Pérez-Ortiz, Pedro Antonio Gutiérrez, César Hervás-Martínez:
Synthetic over-sampling in the empirical feature space. - María Pérez-Ortiz, Pedro Antonio Gutiérrez, Javier Sánchez-Monedero, César Hervás-Martínez:
Multi-scale Support Vector Machine Optimization by Kernel Target-Alignment. - Vladimer Kobayashi, Tomàs Aluja, Lluís Belanche:
Handling missing values in kernel methods with application to microbiology data.
Human Activity and Motion Disorder Recognition: towards smarter Interactive Cognitive Environments
- Jorge Luis Reyes-Ortiz, Alessandro Ghio, Xavier Parra, Davide Anguita, Joan Cabestany, Andreu Català:
Human Activity and Motion Disorder Recognition: towards smarter Interactive Cognitive Environments. - Albert Samà, Carlos Pérez-López, Daniel Rodríguez Martín, Joan Cabestany, Juan-Manuel Moreno Aróstegui, Alejandro Rodríguez-Molinero:
A heterogeneous database for movement knowledge extraction in Parkinson's disease. - Labiba Gillani Fahad, Arshad Ali, Muttukrishnan Rajarajan:
Long term analysis of daily activities in smart home. - Lei Gao, Alan Bourke, John Nelson:
Sensor Positioning for Activity Recognition Using Multiple Accelerometer-Based Sensors. - Audrey Robinel, Didier Puzenat:
Multi-user Blood Alcohol Content estimation in a realistic simulator using Artificial Neural Networks and Support Vector Machines. - Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz:
A Public Domain Dataset for Human Activity Recognition using Smartphones. - Bernardino Romera-Paredes, Min S. H. Aung, Nadia Bianchi-Berthouze:
A One-Vs-One Classifier Ensemble With Majority Voting for Activity Recognition. - Marika Kästner, Marc Strickert, Thomas Villmann:
A sparse kernelized matrix learning vector quantization model for human activity recognition. - Attila Reiss, Gustaf Hendeby, Didier Stricker:
A competitive approach for human activity recognition on smartphones.
Classification
- Salvatore Masecchia, Saverio Salzo, Annalisa Barla, Alessandro Verri:
A dictionary learning based method for aCGH segmentation. - Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
A Learning Machine with a Bit-Based Hypothesis Space. - Joe Staines, David Barber:
Optimization by Variational Bounding. - Santiago Murillo Rendón, Diego Hernán Peluffo-Ordóñez, Germán Castellanos-Domínguez:
support vector machine-based aproach for multi-labelers problems. - James Hogan, Peter Holland, Alex Holloway, Robert Petit, Timothy Read:
Read classification for next generation sequencing. - Agata Manolova, Anne Guérin-Dugué:
A new metric for dissimilarity data classification based on Support Vector Machines optimization. - Oliver Beyer, Philipp Cimiano:
DYNG: Dynamic Online Growing Neural Gas for stream data classification. - Klaas Dijkstra, Walter Jansen, Jaap van de Loosdrecht:
Prior knowledge in an end-user trainable machine vision framework. - Tina Geweniger, Marika Kästner, Thomas Villmann:
Border sensitive fuzzy vector quantization in semi-supervised learning. - Danilo S. Carvalho, Hugo C. C. Carneiro, Felipe M. G. França, Priscila M. V. Lima:
B-bleaching: Agile Overtraining Avoidance in the WiSARD Weightless Neural Classifier. - Douglas de O. Cardoso, João Gama, Massimo De Gregorio, Felipe M. G. França, Maurizio Giordano, Priscila M. V. Lima:
WIPS: the WiSARD Indoor Positioning System. - Van Tuc Nguyen, Ah Chung Tsoi, Markus Hagenbuchner:
Cost-sensitive cascade graph neural networks.
Sparsity for interpretation and visualization in inference models
- Vanya Van Belle, Paulo Lisboa:
Research directions in interpretable machine learning models. - Clemens Otte:
Learning regression models with guaranteed error bounds. - Daniela Hofmann, Barbara Hammer:
Sparse approximations for kernel learning vector quantization. - Alessandra Tosi, Alfredo Vellido:
Robust cartogram visualization of outliers in manifold learning. - José María Martínez-Martínez, Pablo Escandell-Montero, José David Martín-Guerrero, Joan Vila-Francés, Emilio Soria-Olivas:
ManiSonS: A New Visualization Tool for Manifold Clustering. - David L. García, Àngela Nebot, Alfredo Vellido:
Visualizing pay-per-view television customers churn using cartograms and flow maps. - Andrej Gisbrecht, Yoan Miché, Barbara Hammer, Amaury Lendasse:
Visualizing dependencies of spectral features using mutual information.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.