default search action
Jude W. Shavlik
Person information
- affiliation: University of Wisconsin-Madison, Madison, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [c109]Raymond J. Mooney, Jude W. Shavlik:
A Recap of Early Work on Theory and Knowledge Refinement. AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering 2021
2010 – 2019
- 2016
- [c108]Ameet Soni, Dileep Viswanathan, Jude W. Shavlik, Sriraam Natarajan:
Learning Relational Dependency Networks for Relation Extraction. ILP 2016: 81-93 - [i5]Dileep Viswanathan, Ameet Soni, Jude W. Shavlik, Sriraam Natarajan:
Learning Relational Dependency Networks for Relation Extraction. CoRR abs/1607.00424 (2016) - 2015
- [j37]Tushar Khot, Sriraam Natarajan, Kristian Kersting, Jude W. Shavlik:
Gradient-based boosting for statistical relational learning: the Markov logic network and missing data cases. Mach. Learn. 100(1): 75-100 (2015) - [c107]Raksha Kumaraswamy, Anurag Wazalwar, Tushar Khot, Jude W. Shavlik, Sriraam Natarajan:
Anomaly Detection in Text: The Value of Domain Knowledge. FLAIRS 2015: 225-228 - [i4]Dileep Viswanathan, Anurag Wazalwar, Sriraam Natarajan, Ameet Soni, Jude W. Shavlik:
TAC KBP 2015 : English Slot Filling Track Relational Learning with Expert Advice. TAC 2015 - 2014
- [b2]Sriraam Natarajan, Kristian Kersting, Tushar Khot, Jude W. Shavlik:
Boosted Statistical Relational Learners - From Benchmarks to Data-Driven Medicine. Springer Briefs in Computer Science, Springer 2014, ISBN 978-3-319-13643-1, pp. 1-68 - [c106]Tushar Khot, Sriraam Natarajan, Jude W. Shavlik:
Relational One-Class Classification: A Non-Parametric Approach. AAAI 2014: 2453-2459 - [c105]Tushar Khot, Sriraam Natarajan, Jude W. Shavlik:
Classification from One Class of Examples for Relational Domains. StarAI@AAAI 2014 - [c104]Sriraam Natarajan, Jose Picado, Tushar Khot, Kristian Kersting, Christopher Ré, Jude W. Shavlik:
Effectively Creating Weakly Labeled Training Examples via Approximate Domain Knowledge. ILP 2014: 92-107 - [c103]Finn Kuusisto, Vítor Santos Costa
, Houssam Nassif, Elizabeth S. Burnside
, David Page, Jude W. Shavlik:
Support Vector Machines for Differential Prediction. ECML/PKDD (2) 2014: 50-65 - [c102]Xiujun Li, Wei Gao, Jude W. Shavlik:
Detecting Semantic Uncertainty by Learning Hedge Cues in Sentences Using an HMM. SMIR@SIGIR 2014: 30-37 - [c101]Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton, Narasimhan Rampalli, Jude W. Shavlik, Xiaojin Zhu:
Corleone: hands-off crowdsourcing for entity matching. SIGMOD Conference 2014: 601-612 - 2013
- [c100]Sriraam Natarajan, Jose Picado, Tushar Khot, Kristian Kersting, Christopher Ré, Jude W. Shavlik:
Using Commonsense Knowledge to Automatically Create (Noisy) Training Examples from Text. StarAI@AAAI 2013 - [c99]Jie Liu, David Page, Houssam Nassif, Jude W. Shavlik, Peggy L. Peissig, Catherine A. McCarty, Adedayo A. Onitilo, Elizabeth S. Burnside:
Genetic Variants Improve Breast Cancer Risk Prediction on Mammograms. AMIA 2013 - [c98]Finn Kuusisto, Inês de Castro Dutra
, Houssam Nassif, Yirong Wu, Molly E. Klein, Heather B. Neuman, Jude W. Shavlik, Elizabeth S. Burnside
:
Using machine learning to identify benign cases with non-definitive biopsy. Healthcom 2013: 283-285 - [c97]Gautam Kunapuli, Phillip Odom, Jude W. Shavlik, Sriraam Natarajan:
Guiding Autonomous Agents to Better Behaviors through Human Advice. ICDM 2013: 409-418 - [c96]Houssam Nassif, Finn Kuusisto, Elizabeth S. Burnside, Jude W. Shavlik:
Uplift Modeling with ROC: An SRL Case Study. ILP (Late Breaking Papers) 2013: 40-45 - [c95]Houssam Nassif, Finn Kuusisto, Elizabeth S. Burnside
, David Page, Jude W. Shavlik, Vítor Santos Costa
:
Score As You Lift (SAYL): A Statistical Relational Learning Approach to Uplift Modeling. ECML/PKDD (3) 2013: 595-611 - [c94]Tushar Khot, Ce Zhang, Jude W. Shavlik, Sriraam Natarajan, Christopher Ré:
Bootstrapping Knowledge Base Acceleration. TREC 2013 - 2012
- [j36]Feng Niu, Ce Zhang, Christopher Ré, Jude W. Shavlik:
Elementary: Large-Scale Knowledge-Base Construction via Machine Learning and Statistical Inference. Int. J. Semantic Web Inf. Syst. 8(3): 42-73 (2012) - [j35]Ameet Soni
, Jude W. Shavlik:
Probabilistic Ensembles for Improved Inference in protein-Structure Determination. J. Bioinform. Comput. Biol. 10(1) (2012) - [j34]Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude W. Shavlik:
Gradient-based boosting for statistical relational learning: The relational dependency network case. Mach. Learn. 86(1): 25-56 (2012) - [c93]Timothy W. Clark, William W. Cohen, Lawrence Hunter, Chris J. Lintott, Jude W. Shavlik:
Invited Talks. AAAI Fall Symposium: Discovery Informatics 2012 - [c92]Ce Zhang, Feng Niu, Christopher Ré, Jude W. Shavlik:
Big Data versus the Crowd: Looking for Relationships in All the Right Places. ACL (1) 2012: 825-834 - [c91]Feng Niu, Ce Zhang, Christopher Ré, Jude W. Shavlik:
Scaling Inference for Markov Logic via Dual Decomposition. ICDM 2012: 1032-1037 - [c90]Jude W. Shavlik:
Twenty-Five Years of Combining Symbolic and Numeric Learning. NeSy@AAAI 2012 - [c89]Gautam Kunapuli, Jude W. Shavlik:
Mirror Descent for Metric Learning: A Unified Approach. ECML/PKDD (1) 2012: 859-874 - [c88]Tushar Khot, Siddharth Srivastava, Sriraam Natarajan, Jude W. Shavlik:
Learning Relational Structure for Temporal Relation Extraction. StarAI@UAI 2012 - [c87]Feng Niu, Ce Zhang, Christopher Ré, Jude W. Shavlik:
DeepDive: Web-scale Knowledge-base Construction using Statistical Learning and Inference. VLDS 2012: 25-28 - 2011
- [j33]Feng Niu, Christopher Ré, AnHai Doan, Jude W. Shavlik:
Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS. Proc. VLDB Endow. 4(6): 373-384 (2011) - [j32]Faisal Farooq, Balaji Krishnapuram, Rómer Rosales, Shipeng Yu, Jude W. Shavlik, Raju Kucherlapati:
Predictive Models in Personalized Medicine: Neural Information Processing Systems (NIPS), 2010 workshop report. SIGHIT Rec. 1(1): 23-25 (2011) - [c86]Ameet Soni, Jude W. Shavlik:
Probabilistic ensembles for improved inference in protein-structure determination. BCB 2011: 264-273 - [c85]Tushar Khot, Sriraam Natarajan, Kristian Kersting, Jude W. Shavlik:
Learning Markov Logic Networks via Functional Gradient Boosting. ICDM 2011: 320-329 - [c84]Sriraam Natarajan, Saket Joshi, Prasad Tadepalli
, Kristian Kersting, Jude W. Shavlik:
Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach. IJCAI 2011: 1414-1420 - [c83]Trevor Walker, Gautam Kunapuli
, Noah Larsen, David Page, Jude W. Shavlik:
Integrating knowledge capture and supervised learning through a human-computer interface. K-CAP 2011: 89-96 - [c82]Gautam Kunapuli, Richard Maclin, Jude W. Shavlik:
Advice Refinement in Knowledge-Based SVMs. NIPS 2011: 1728-1736 - [i3]Feng Niu, Christopher Ré, AnHai Doan, Jude W. Shavlik:
Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS. CoRR abs/1104.3216 (2011) - [i2]Feng Niu, Ce Zhang, Christopher Ré, Jude W. Shavlik:
Felix: Scaling Inference for Markov Logic with an Operator-based Approach. CoRR abs/1108.0294 (2011) - 2010
- [j31]Ryan W. Woods, Louis Oliphant, Kazuhiko Shinki, David Page, Jude W. Shavlik, Elizabeth S. Burnside
:
Validation of Results from Knowledge Discovery: Mass Density as a Predictor of Breast Cancer. J. Digit. Imaging 23(5): 554-561 (2010) - [c81]Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli
, Kristian Kersting, Jude W. Shavlik:
Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models. StarAI@AAAI 2010 - [c80]Ameet Soni, Craig A. Bingman, Jude W. Shavlik:
Guiding belief propagation using domain knowledge for protein-structure determination. BCB 2010: 285-294 - [c79]Sriraam Natarajan, Gautam Kunapuli
, Kshitij Judah, Prasad Tadepalli
, Kristian Kersting, Jude W. Shavlik:
Multi-Agent Inverse Reinforcement Learning. ICMLA 2010: 395-400 - [c78]Houssam Nassif, David Page, Mehmet Ayvaci, Jude W. Shavlik, Elizabeth S. Burnside:
Uncovering age-specific invasive and DCIS breast cancer rules using inductive logic programming. IHI 2010: 76-82 - [c77]Trevor Walker, Ciaran O'Reilly, Gautam Kunapuli, Sriraam Natarajan, Richard Maclin, David Page, Jude W. Shavlik:
Automating the ILP Setup Task: Converting User Advice about Specific Examples into General Background Knowledge. ILP 2010: 253-268 - [c76]Gautam Kunapuli, Kristin P. Bennett, Amina Shabbeer, Richard Maclin, Jude W. Shavlik:
Online Knowledge-Based Support Vector Machines. ECML/PKDD (2) 2010: 145-161 - [c75]Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik:
Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models. ECML/PKDD (2) 2010: 434-450 - [p4]Lisa Torrey, Jude W. Shavlik, Trevor Walker, Richard Maclin
:
Transfer Learning via Advice Taking. Advances in Machine Learning I 2010: 147-170
2000 – 2009
- 2009
- [j30]Frank DiMaio, Ameet Soni
, George N. Phillips, Jude W. Shavlik:
Spherical-harmonic decomposition for molecular recognition in electron-density maps. Int. J. Data Min. Bioinform. 3(2): 205-227 (2009) - [j29]Bee-Chung Chen, Raghu Ramakrishnan, Jude W. Shavlik, Pradeep Tamma:
Bellwether analysis: Searching for cost-effective query-defined predictors in large databases. ACM Trans. Knowl. Discov. Data 3(1): 5:1-5:49 (2009) - [c74]Houssam Nassif, Ryan W. Woods, Elizabeth S. Burnside
, Mehmet Ayvaci
, Jude W. Shavlik, David Page:
Information Extraction for Clinical Data Mining: A Mammography Case Study. ICDM Workshops 2009: 37-42 - [c73]Sriraam Natarajan, Prasad Tadepalli
, Gautam Kunapuli
, Jude W. Shavlik:
Learning Parameters for Relational Probabilistic Models with Noisy-Or Combining Rule. ICMLA 2009: 141-146 - [c72]Jude W. Shavlik, Sriraam Natarajan:
Speeding Up Inference in Markov Logic Networks by Preprocessing to Reduce the Size of the Resulting Grounded Network. IJCAI 2009: 1951-1956 - [c71]Louis Oliphant, Elizabeth S. Burnside, Jude W. Shavlik:
Boosting First-Order Clauses for Large, Skewed Data Sets. ILP 2009: 166-177 - [c70]Lisa Torrey, Jude W. Shavlik:
Policy Transfer via Markov Logic Networks. ILP 2009: 234-248 - 2008
- [j28]Hendrik Blockeel
, Jude W. Shavlik, Prasad Tadepalli
:
Guest editors' introduction: special issue on inductive logic programming (ILP-2007). Mach. Learn. 73(1): 1-2 (2008) - [c69]Lisa Torrey, Trevor Walker, Richard Maclin, Jude W. Shavlik:
Advice Taking and Transfer Learning: Naturally Inspired Extensions to Reinforcement Learning. AAAI Fall Symposium: Naturally-Inspired Artificial Intelligence 2008: 103-110 - [p3]Lisa Torrey, Jude W. Shavlik, Trevor Walker, Richard Maclin
:
Rule Extraction for Transfer Learning. Rule Extraction from Support Vector Machines 2008: 67-82 - [e3]Hendrik Blockeel
, Jan Ramon, Jude W. Shavlik, Prasad Tadepalli
:
Inductive Logic Programming, 17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers. Lecture Notes in Computer Science 4894, Springer 2008, ISBN 978-3-540-78468-5 [contents] - 2007
- [j27]Frank DiMaio, Dmitry A. Kondrashov
, Eduard Bitto, Ameet Soni
, Craig A. Bingman, George N. Phillips Jr., Jude W. Shavlik:
Creating protein models from electron-density maps using particle-filtering methods. Bioinform. 23(21): 2851-2858 (2007) - [c68]Richard Maclin, Edward W. Wild, Jude W. Shavlik, Lisa Torrey, Trevor Walker:
Refining Rules Incorporated into Knowledge-Based Support Vector Learners Via Successive Linear Programming. AAAI 2007: 584-589 - [c67]Frank DiMaio, Ameet Soni, George N. Phillips, Jude W. Shavlik:
Improved Methods for Template-Matching in Electron-Density Maps Using Spherical Harmonics. BIBM 2007: 258-265 - [c66]Mark Goadrich, Jude W. Shavlik:
Combining Clauses with Various Precisions and Recalls to Produce Accurate Probabilistic Estimates. ILP 2007: 122-131 - [c65]Louis Oliphant, Jude W. Shavlik:
Using Bayesian Networks to Direct Stochastic Search in Inductive Logic Programming. ILP 2007: 191-199 - [c64]Lisa Torrey, Jude W. Shavlik, Trevor Walker, Richard Maclin
:
Relational Macros for Transfer in Reinforcement Learning. ILP 2007: 254-268 - [c63]Trevor Walker, Lisa Torrey, Jude W. Shavlik, Richard Maclin
:
Building Relational World Models for Reinforcement Learning. ILP 2007: 280-291 - 2006
- [j26]Mark Goadrich, Louis Oliphant, Jude W. Shavlik:
Gleaner: Creating ensembles of first-order clauses to improve recall-precision curves. Mach. Learn. 64(1-3): 231-261 (2006) - [c62]Richard Maclin, Jude W. Shavlik, Trevor Walker, Lisa Torrey:
A Simple and Effective Method for Incorporating Advice into Kernel Methods. AAAI 2006: 427-432 - [c61]Lisa Torrey, Jude W. Shavlik, Trevor Walker, Richard Maclin:
Skill Acquisition Via Transfer Learning and Advice Taking. ECML 2006: 425-436 - [c60]Frank DiMaio, Jude W. Shavlik:
Belief Propagation in Large, Highly Connected Graphs for 3D Part-Based Object Recognition. ICDM 2006: 845-850 - [c59]Frank DiMaio, Jude W. Shavlik, George N. Phillips:
A probabilistic approach to protein backbone tracing in electron density maps. ISMB (Supplement of Bioinformatics) 2006: 81-89 - [c58]Bee-Chung Chen, Raghu Ramakrishnan, Jude W. Shavlik, Pradeep Tamma:
Bellwether Analysis: Predicting Global Aggregates from Local Regions. VLDB 2006: 655-666 - 2005
- [c57]Richard Maclin, Jude W. Shavlik, Lisa Torrey, Trevor Walker, Edward W. Wild:
Giving Advice about Preferred Actions to Reinforcement Learners Via Knowledge-Based Kernel Regression. AAAI 2005: 819-824 - [c56]Lisa Torrey, Trevor Walker, Jude W. Shavlik, Richard Maclin:
Using Advice to Transfer Knowledge Acquired in One Reinforcement Learning Task to Another. ECML 2005: 412-424 - [c55]Jesse Davis, Elizabeth S. Burnside, Inês de Castro Dutra, David Page, Raghu Ramakrishnan, Vítor Santos Costa, Jude W. Shavlik:
View Learning for Statistical Relational Learning: With an Application to Mammography. IJCAI 2005: 677-683 - [c54]Héctor Corrada Bravo, David Page, Raghu Ramakrishnan, Jude W. Shavlik, Vítor Santos Costa
:
A Framework for Set-Oriented Computation in Inductive Logic Programming and Its Application in Generalizing Inverse Entailment. ILP 2005: 69-86 - [c53]Lisa Torrey, Trevor Walker, Jude W. Shavlik, Richard Maclin
:
Knowledge transfer via advice taking. K-CAP 2005: 217-218 - 2004
- [j25]Michael Molla, Michael Waddell, David Page, Jude W. Shavlik:
Using Machine Learning to Design and Interpret Gene-Expression Microarrays. AI Mag. 25(1): 23-44 (2004) - [j24]Olvi L. Mangasarian, Jude W. Shavlik, Edward W. Wild:
Knowledge-Based Kernel Approximation. J. Mach. Learn. Res. 5: 1127-1141 (2004) - [c52]Michael Molla, Jude W. Shavlik, Thomas Albert, Todd Richmond, Steven Smith:
A Self-Tuning Method for One-Chip SNP Identification. CSB 2004: 69-79 - [c51]Jude W. Shavlik:
Scaling Up ILP: Experiences with Extracting Relations from Biomedical Text. ILP 2004: 7 - [c50]Frank DiMaio, Jude W. Shavlik:
Learning an Approximation to Inductive Logic Programming Clause Evaluation. ILP 2004: 80-97 - [c49]Mark Goadrich, Louis Oliphant, Jude W. Shavlik:
Learning Ensembles of First-Order Clauses for Recall-Precision Curves: A Case Study in Biomedical Information Extraction. ILP 2004: 98-115 - [c48]Jude W. Shavlik, Mark Shavlik:
Selection, combination, and evaluation of effective software sensors for detecting abnormal computer usage. KDD 2004: 276-285 - [c47]Frank DiMaio, Jude W. Shavlik, George N. Phillips:
Pictorial Structures for Molecular Modeling: Interpreting Density Maps. NIPS 2004: 369-376 - 2003
- [j23]Joseph Bockhorst, Mark W. Craven, David Page, Jude W. Shavlik, Jeremy D. Glasner:
A Bayesian Network Approach to Operon Prediction. Bioinform. 19(10): 1227-1235 (2003) - [j22]Tina Eliassi-Rad, Jude W. Shavlik:
A System for Building Intelligent Agents that Learn to Retrieve and Extract Information. User Model. User Adapt. Interact. 13(1-2): 35-88 (2003) - [c46]Glenn Fung, Olvi L. Mangasarian, Jude W. Shavlik:
Knowledge-Based Nonlinear Kernel Classifiers. COLT 2003: 102-113 - [c45]Inês de Castro Dutra
, David Page, Vítor Santos Costa
, Jude W. Shavlik, Michael Waddell:
Toward Automatic Management of Embarrassingly Parallel Applications. Euro-Par 2003: 509-516 - [c44]Fernanda Araújo Baião, Marta Mattoso, Jude W. Shavlik, Gerson Zaverucha:
Applying Theory Revision to the Design of Distributed Databases. ILP 2003: 57-74 - [p2]Tina Eliassi-Rad, Jude W. Shavlik:
Intelligent Web Agents that Learn to Retrieve and Extract Information. Intelligent Exploration of the Web 2003: 255-274 - 2002
- [j21]Yolanda Gil, Mark A. Musen, Jude W. Shavlik:
Report on the First International Conference on Knowledge Capture (K-CAP). AI Mag. 23(4): 107-108 (2002) - [j20]Michael Molla, Peter Andreae, Jeremy D. Glasner, Frederick R. Blattner, Jude W. Shavlik:
Interpreting microarray expression data using text annotating the genes. Inf. Sci. 146(1-4): 75-88 (2002) - [c43]Inês de Castro Dutra
, David Page, Vítor Santos Costa
, Jude W. Shavlik:
An Empirical Evaluation of Bagging in Inductive Logic Programming. ILP 2002: 48-65 - [c42]J. B. Tobler, Michael Molla, Emile F. Nuwaysir, R. D. Green, Jude W. Shavlik:
Evaluating machine learning approaches for aiding probe selection for gene-expression arrays. ISMB 2002: 164-171 - [c41]Michael Molla, Peter Andreae, Jeremy D. Glasner, Frederick R. Blattner, Jude W. Shavlik:
Interpreting Microarray Expression Data Using Text Annotating the Genes. JCIS 2002: 1224-1230 - [c40]Glenn Fung, Olvi L. Mangasarian, Jude W. Shavlik:
Knowledge-Based Support Vector Machine Classifiers. NIPS 2002: 521-528 - 2001
- [c39]Tina Eliassi-Rad, Jude W. Shavlik:
A Theory-Refinement Approach to Information Extraction. ICML 2001: 130-137 - 2000
- [c38]Mark W. Craven, David Page, Jude W. Shavlik, Joseph Bockhorst, Jeremy D. Glasner:
Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled Genes. ICML 2000: 199-206 - [c37]Mark W. Craven, David Page, Jude W. Shavlik, Joseph Bockhorst, Jeremy D. Glasner:
A Probabilistic Learning Approach to Whole-Genome Operon Prediction. ISMB 2000: 116-127 - [c36]Jeremy Goecks, Jude W. Shavlik:
Learning users' interests by unobtrusively observing their normal behavior. IUI 2000: 129-132
1990 – 1999
- 1999
- [j19]Carolyn F. Allex, Jude W. Shavlik, Frederick R. Blattner:
Neural network input representations that produce accurate consensus sequences from DNA fragment assemblies. Bioinform. 15(9): 723-728 (1999) - [c35]Jude W. Shavlik, Lawrence Birnbaum, William R. Swartout
, Eric Horvitz, Barbara Hayes-Roth:
Bridging Science and Applications (Panel). IUI 1999: 45-46 - [c34]Jude W. Shavlik, Susan Calcari, Tina Eliassi-Rad, Jack Solock:
An Instructable, Adaptive Interface for Discovering and Monitoring Information on the World-Wide Web. IUI 1999: 157-160 - 1998
- [p1]Richard Maclin, Jude W. Shavlik:
Creating Advice-Taking Reinforcement Learners. Learning to Learn 1998: 311-347 - [e2]Jude W. Shavlik:
Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998), Madison, Wisconsin, USA, July 24-27, 1998. Morgan Kaufmann 1998, ISBN 1-55860-556-8 [contents] - 1997
- [j18]Mark W. Craven, Jude W. Shavlik:
Using neural networks for data mining. Future Gener. Comput. Syst. 13(2-3): 211-229 (1997) - [j17]Mark W. Craven, Jude W. Shavlik:
Understanding Time-Series Networks: A Case Study in Rule Extraction. Int. J. Neural Syst. 8(4): 373-384 (1997) - [j16]David W. Opitz, Jude W. Shavlik:
Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies. J. Artif. Intell. Res. 6: 177-209 (1997) - [c33]David W. Opitz, Mark W. Craven, Jude W. Shavlik:
Using neural networks to automatically refine expert system knowledge bases: experiments in the NYNEX MAX domain. ICNN 1997: 16-20 - [c32]Carolyn F. Allex, Schuyler F. Baldwin, Jude W. Shavlik, Frederick R. Blattner:
Increasing Consensus Accuracy in DNA Fragment Assemblies by Incorporating Fluorescent Trace Representations. ISMB 1997: 3-14 - [i1]David W. Opitz, Jude W. Shavlik:
Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies. CoRR cs.AI/9705102 (1997) - 1996
- [j15]David W. Opitz, Jude W. Shavlik:
Actively Searching for an Effective Neural Network Ensemble. Connect. Sci. 8(3): 337-354 (1996) - [j14]Richard Maclin, Jude W. Shavlik:
Creating Advice-Taking Reinforcement Learners. Mach. Learn. 22(1-3): 251-281 (1996) - [c31]Carolyn F. Allex, Schuyler F. Baldwin, Jude W. Shavlik, Frederick R. Blattner:
Improving the Quality of Automatic DNA Sequence Assembly Using Fluorescent Trace-Data Classifications. ISMB 1996: 3-14 - [c30]Kevin J. Cherkauer, Jude W. Shavlik:
Growing Simpler Decision Trees to Facilitate Knowledge Discovery. KDD 1996: 315-318 - 1995
- [j13]David W. Opitz, Jude W. Shavlik:
Dynamically adding symbolically meaningful nodes to knowledge-based neural networks. Knowl. Based Syst. 8(6): 301-311 (1995) - [j12]Jude W. Shavlik, Lawrence Hunter
, David B. Searls:
Introduction. Mach. Learn. 21(1-2): 5-9 (1995) - [c29]Richard Maclin, Jude W. Shavlik:
Combining the Predictions of Multiple Classifiers: Using Competitive Learning to Initialize Neural Networks. IJCAI 1995: 524-531 - [c28]Mark W. Craven, Jude W. Shavlik:
Extracting Tree-Structured Representations of Trained Networks. NIPS 1995: 24-30 - [c27]Kevin J. Cherkauer, Jude W. Shavlik:
Rapid Quality Estimation of Neural Network Input Representations. NIPS 1995: 45-51 - [c26]David W. Opitz, Jude W. Shavlik:
Generating Accurate and Diverse Members of a Neural-Network Ensemble. NIPS 1995: 535-541 - 1994
- [j11]Geoffrey G. Towell, Jude W. Shavlik:
Knowledge-Based Artificial Neural Networks. Artif. Intell. 70(1-2): 119-165 (1994) - [j10]David B. Searls, Jude W. Shavlik, Lawrence Hunter:
The First International Conference on Intelligent Systems for Molecular Biology. AI Mag. 15(1): 12-13 (1994) - [j9]Mark W. Craven, Jude W. Shavlik:
Machine Learning Approaches to Gene Recognition. IEEE Expert 9(2): 2-10 (1994) - [j8]Jude W. Shavlik:
Combining Symbolic and Neural Learning. Mach. Learn. 14(1): 321-331 (1994) - [c25]Richard Maclin, Jude W. Shavlik:
Incorporating Advice into Agents that Learn from Reinforcements. AAAI 1994: 694-699 - [c24]Mark W. Craven, Jude W. Shavlik:
Using Sampling and Queries to Extract Rules from Trained Neural Networks. ICML 1994: 37-45 - [c23]David W. Opitz, Jude W. Shavlik:
Using Genetic Search to Refine Knowledge-based Neural Networks. ICML 1994: 208-216 - 1993
- [j7]Richard Maclin, Jude W. Shavlik:
Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding. Mach. Learn. 11: 195-215 (1993) - [j6]Geoffrey G. Towell, Jude W. Shavlik:
Extracting Refined Rules from Knowledge-Based Neural Networks. Mach. Learn. 13: 71-101 (1993) - [c22]Mark W. Craven, Jude W. Shavlik:
Learning Symbolic Rules Using Artificial Neural Networks. ICML 1993: 73-80 - [c21]Mark W. Craven, Jude W. Shavlik:
Learning to Represent Codons: A Challenge Problem for Constructive Induction. IJCAI 1993: 1319-1324 - [c20]David W. Opitz, Jude W. Shavlik:
Heuristically Expanding Knowledge-Based Neural Networks. IJCAI 1993: 1360-1365 - [c19]Kevin J. Cherkauer, Jude W. Shavlik:
Protein Structure Prediction: Selecting Salient Features from Large Candidate Pools. ISMB 1993: 74-82 - [e1]Lawrence Hunter, David B. Searls, Jude W. Shavlik:
Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology, Bethesda, MD, USA, July 1993. AAAI 1993, ISBN 0-929280-47-4 [contents] - 1992
- [j5]Mark W. Craven, Jude W. Shavlik:
Visualizing Learning and Computation in Artificial Neural Networks. Int. J. Artif. Intell. Tools 1(3): 399-426 (1992) - [j4]Gary M. Scott, Jude W. Shavlik, W. Harmon Ray:
Refining PID Controllers Using Neural Networks. Neural Comput. 4(5): 746-757 (1992) - [c18]Richard Maclin, Jude W. Shavlik:
Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding. AAAI 1992: 165-170 - [c17]Geoffrey G. Towell, Jude W. Shavlik:
Using Symbolic Learning to Improve Knowledge-Based Neural Networks. AAAI 1992: 177-182 - 1991
- [j3]Jude W. Shavlik, Raymond J. Mooney, Geoffrey G. Towell:
Symbolic and Neural Learning Algorithms: An Experimental Comparison. Mach. Learn. 6: 111-143 (1991) - [c16]Geoffrey G. Towell, Mark W. Craven, Jude W. Shavlik:
Constructive Induction in Knowledge-Based Neural Networks. ML 1991: 213-217 - [c15]Richard Maclin
, Jude W. Shavlik:
Refining Domain Theories Expressed as Finite-State Automata. ML 1991: 524-528 - [c14]Gary M. Scott, Jude W. Shavlik, W. Harmon Ray:
Refined PID Controllers Using Neural Networks. NIPS 1991: 555-562 - [c13]Geoffrey G. Towell, Jude W. Shavlik:
Interpretation of Artificial Neural Networks: Mapping Knowledge-Based Neural Networks into Rules. NIPS 1991: 977-984 - 1990
- [j2]Jude W. Shavlik, Gerald DeJong:
Learning in Mathematically-Based Domains: Understanding and Generalizing Obstacle Cancellations. Artif. Intell. 45(1-2): 1-45 (1990) - [j1]Jude W. Shavlik:
Acquiring Recursive and Iterative Concepts with Explanation-Based Learning. Mach. Learn. 5: 39-40 (1990) - [c12]Geoffrey G. Towell, Jude W. Shavlik, Michiel O. Noordewier:
Refinement ofApproximate Domain Theories by Knowledge-Based Neural Networks. AAAI 1990: 861-866 - [c11]Michiel O. Noordewier, Geoffrey G. Towell, Jude W. Shavlik:
Training Knowledge-Based Neural Networks to Recognize Genes. NIPS 1990: 530-536
1980 – 1989
- 1989
- [c10]Jude W. Shavlik, Geoffrey G. Towell:
Combining Explanation-Based Learning and Artificial Neural Networks. ML 1989: 90-93 - [c9]Douglas H. Fisher, Kathleen B. McKusick, Raymond J. Mooney, Jude W. Shavlik, Geoffrey G. Towell:
Processing Issues in Comparisons of Symbolic and Connectionist Learning Systems. ML 1989: 169-173 - [c8]Jude W. Shavlik:
An Empirical Analysis of EBL Approaches for Learning Plan Schemata. ML 1989: 183-187 - [c7]Richard Maclin, Jude W. Shavlik:
Enriching Vocabularies by Generalizing Explanation Structures. ML 1989: 444-446 - [c6]Jude W. Shavlik:
Acquiring Recursive Concepts with Explanation-Based Learning. IJCAI 1989: 688-693 - [c5]Raymond J. Mooney, Jude W. Shavlik, Geoffrey G. Towell, Alan Gove:
An Experimental Comparison of Symbolic and Connectionist Learning Algorithms. IJCAI 1989: 775-780 - 1988
- [b1]Jude W. Shavlik:
Generalizing the Structure of Explanations in Explanation-Based Learning. University of Illinois Urbana-Champaign, USA, 1988 - 1987
- [c4]Jude W. Shavlik, Gerald DeJong:
BAGGER: An EBL System that Extends and Generalizes Explanations. AAAI 1987: 516-520 - [c3]Jude W. Shavlik, Gerald DeJong:
An Explanation-based Approach to Generalizing Number. IJCAI 1987: 236-238 - 1986
- [c2]Jude W. Shavlik, Gerald DeJong:
Computer understanding and generalization of symbolic mathematical calculations: a case study in physics problem solving. SYMSAC 1986: 148-153 - 1985
- [c1]Jude W. Shavlik:
Learning about Momentum Conservation. IJCAI 1985: 667-669
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-04 21:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint