default search action
Ralf Herbrich
Person information
- affiliation: Amazon Inc., Berlin
- affiliation (former): Facebook Inc., Menlo Park
- affiliation (former): Microsoft Research, Cambridge
- affiliation (former): Technical University of Berlin, Department of Computer Science
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c51]Nicolas Alder, Ralf Herbrich:
Energy-Efficient Gaussian Processes Using Low-Precision Arithmetic. ICML 2024 - [c50]Paul Mattes, Rainer Schlosser, Ralf Herbrich:
Hieros: Hierarchical Imagination on Structured State Space Sequence World Models. ICML 2024 - [i8]Nicolas Alder, Kai Ebert, Ralf Herbrich, Philipp Hacker:
AI, Climate, and Transparency: Operationalizing and Improving the AI Act. CoRR abs/2409.07471 (2024) - [i7]Kai Ebert, Nicolas Alder, Ralf Herbrich, Philipp Hacker:
AI, Climate, and Regulation: From Data Centers to the AI Act. CoRR abs/2410.06681 (2024) - [i6]Leo Kohlenberg, Leonard Horns, Frederic Sadrieh, Nils Kiele, Matthis Clausen, Konstantin Ketterer, Avetis Navasardyan, Tamara Czinczoll, Gerard de Melo, Ralf Herbrich:
Learning to Predict Usage Options of Product Reviews with LLM-Generated Labels. CoRR abs/2410.12470 (2024) - 2023
- [i5]Paul Mattes, Rainer Schlosser, Ralf Herbrich:
Hieros: Hierarchical Imagination on Structured State Space Sequence World Models. CoRR abs/2310.05167 (2023) - 2022
- [c49]Richard Kurle, Ralf Herbrich, Tim Januschowski, Yuyang Wang, Jan Gasthaus:
On the detrimental effect of invariances in the likelihood for variational inference. NeurIPS 2022 - [i4]Richard Kurle, Ralf Herbrich, Tim Januschowski, Yuyang Wang, Jan Gasthaus:
On the detrimental effect of invariances in the likelihood for variational inference. CoRR abs/2209.07157 (2022) - 2021
- [i3]Thore Graepel, Ralf Herbrich:
A PAC-Bayesian Analysis of Distance-Based Classifiers: Why Nearest-Neighbour works! CoRR abs/2109.13889 (2021) - 2020
- [i2]Ralf Herbrich, Rajeev Rastogi, Roland Vollgraf:
CRISP: A Probabilistic Model for Individual-Level COVID-19 Infection Risk Estimation Based on Contact Data. CoRR abs/2006.04942 (2020)
2010 – 2019
- 2017
- [c48]Ralf Herbrich:
Machine Learning at Amazon. WSDM 2017: 535 - 2016
- [c47]Ralf Herbrich:
Learning Sparse Models at Scale. KDD 2016: 407 - 2014
- [c46]Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers, Joaquin Quiñonero Candela:
Practical Lessons from Predicting Clicks on Ads at Facebook. ADKDD@KDD 2014: 5:1-5:9 - 2013
- [c45]Deepayan Chakrabarti, Ralf Herbrich:
Speeding up large-scale learning with a social prior. KDD 2013: 650-658 - 2012
- [c44]Laura Dietz, Ben Gamari, John Guiver, Edward Lloyd Snelson, Ralf Herbrich:
De-Layering Social Networks by Shared Tastes of Friendships. ICWSM 2012 - [c43]Khalid El-Arini, Ulrich Paquet, Ralf Herbrich, Jurgen Van Gael, Blaise Agüera y Arcas:
Transparent user models for personalization. KDD 2012: 678-686 - [c42]Ralf Herbrich:
Distributed, real-time bayesian learning in online services. RecSys 2012: 203-204 - [c41]Pushmeet Kohli, Michael J. Kearns, Yoram Bachrach, Ralf Herbrich, David Stillwell, Thore Graepel:
Colonel Blotto on Facebook: the effect of social relations on strategic interaction. WebSci 2012: 141-150 - [c40]Philipp Hennig, David H. Stern, Ralf Herbrich, Thore Graepel:
Kernel Topic Models. AISTATS 2012: 511-519 - 2011
- [c39]Weiwei Cheng, Gjergji Kasneci, Thore Graepel, David H. Stern, Ralf Herbrich:
Automated feature generation from structured knowledge. CIKM 2011: 1395-1404 - [c38]Yan Xu, Xiang Cao, Abigail Sellen, Ralf Herbrich, Thore Graepel:
Sociable killers: understanding social relationships in an online first-person shooter game. CSCW 2011: 197-206 - [i1]Philipp Hennig, David H. Stern, Ralf Herbrich, Thore Graepel:
Kernel Topic Models. CoRR abs/1110.4713 (2011) - 2010
- [c37]David H. Stern, Horst Samulowitz, Ralf Herbrich, Thore Graepel, Luca Pulina, Armando Tacchella:
Collaborative Expert Portfolio Management. AAAI 2010: 179-184 - [c36]Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, Ralf Herbrich:
Web-Scale Bayesian Click-Through rate Prediction for Sponsored Search Advertising in Microsoft's Bing Search Engine. ICML 2010: 13-20 - [c35]Gjergji Kasneci, Jurgen Van Gael, Ralf Herbrich, Thore Graepel:
Bayesian Knowledge Corroboration with Logical Rules and User Feedback. ECML/PKDD (2) 2010: 1-18 - [c34]Yoram Bachrach, Ralf Herbrich:
Fingerprinting Ratings for Collaborative Filtering - Theoretical and Empirical Analysis. SPIRE 2010: 25-36 - [c33]Xinhua Zhang, Thore Graepel, Ralf Herbrich:
Bayesian Online Learning for Multi-label and Multi-variate Performance Measures. AISTATS 2010: 956-963
2000 – 2009
- 2009
- [j8]Peter A. Flach, Sebastian Spiegler, Bruno Golénia, Simon Price, John Guiver, Ralf Herbrich, Thore Graepel, Mohammed J. Zaki:
Novel tools to streamline the conference review process: experiences from SIGKDD'09. SIGKDD Explor. 11(2): 63-67 (2009) - [c32]Anton Schwaighofer, Joaquin Quiñonero Candela, Thomas Borchert, Thore Graepel, Ralf Herbrich:
Scalable clustering and keyword suggestion for online advertisements. KDD Workshop on Data Mining and Audience Intelligence for Advertising 2009: 27-36 - [c31]Yoram Bachrach, Ralf Herbrich, Ely Porat:
Sketching Algorithms for Approximating Rank Correlations in Collaborative Filtering Systems. SPIRE 2009: 344-352 - [c30]David H. Stern, Ralf Herbrich, Thore Graepel:
Matchbox: large scale online bayesian recommendations. WWW 2009: 111-120 - 2008
- [c29]Thore Graepel, Ralf Herbrich:
Large scale data analysis and modelling in online services and advertising. KDD 2008: 2 - 2007
- [c28]David H. Stern, Ralf Herbrich, Thore Graepel:
Learning to solve game trees. ICML 2007: 839-846 - [c27]Pierre Dangauthier, Ralf Herbrich, Tom Minka, Thore Graepel:
TrueSkill Through Time: Revisiting the History of Chess. NIPS 2007: 337-344 - 2006
- [c26]David H. Stern, Ralf Herbrich, Thore Graepel:
Bayesian pattern ranking for move prediction in the game of Go. ICML 2006: 873-880 - [c25]Ralf Herbrich, Tom Minka, Thore Graepel:
TrueSkillTM: A Bayesian Skill Rating System. NIPS 2006: 569-576 - 2005
- [j7]Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled, Dan Roth:
Generalization Bounds for the Area Under the ROC Curve. J. Mach. Learn. Res. 6: 393-425 (2005) - [j6]Arthur Gretton, Ralf Herbrich, Alexander J. Smola, Olivier Bousquet, Bernhard Schölkopf:
Kernel Methods for Measuring Independence. J. Mach. Learn. Res. 6: 2075-2129 (2005) - [j5]Thore Graepel, Ralf Herbrich, John Shawe-Taylor:
PAC-Bayesian Compression Bounds on the Prediction Error of Learning Algorithms for Classification. Mach. Learn. 59(1-2): 55-76 (2005) - [c24]Arthur Gretton, Alexander J. Smola, Olivier Bousquet, Ralf Herbrich, Andrei Belitski, Mark Augath, Yusuke Murayama, Jon Pauls, Bernhard Schölkopf, Nikos K. Logothetis:
Kernel Constrained Covariance for Dependence Measurement. AISTATS 2005: 112-119 - [c23]Shyamsundar Rajaram, Thore Graepel, Ralf Herbrich:
Poisson-Networks: A Model for Structured Poisson Processes. AISTATS 2005: 277-284 - 2004
- [c22]Shivani Agarwal, Thore Graepel, Ralf Herbrich, Dan Roth:
A Large Deviation Bound for the Area Under the ROC Curve. NIPS 2004: 9-16 - 2003
- [j4]Ralf Herbrich, Thore Graepel:
Introduction to the Special Issue on Learning Theory. J. Mach. Learn. Res. 4: 755-757 (2003) - [c21]Arthur Gretton, Ralf Herbrich, Alexander J. Smola:
The kernel mutual information. ICASSP (4) 2003: 880-884 - [c20]Thore Graepel, Ralf Herbrich:
Invariant Pattern Recognition by Semi-Definite Programming Machines. NIPS 2003: 33-40 - [c19]Thore Graepel, Ralf Herbrich, Andriy Kharechko, John Shawe-Taylor:
Semi-Definite Programming by Perceptron Learning. NIPS 2003: 457-464 - [c18]Edward Harrington, Ralf Herbrich, Jyrki Kivinen, John C. Platt, Robert C. Williamson:
Online Bayes Point Machines. PAKDD 2003: 241-252 - 2002
- [b2]Ralf Herbrich:
Learning Kernel Classifiers - Theory and Algorithms. Adaptive computation and machine learning, MIT Press 2002, ISBN 978-0-262-08306-5, pp. I-XX, 1-364 - [j3]Ralf Herbrich, Robert C. Williamson:
Algorithmic Luckiness. J. Mach. Learn. Res. 3: 175-212 (2002) - [j2]Ralf Herbrich, Thore Graepel:
A PAC-Bayesian margin bound for linear classifiers. IEEE Trans. Inf. Theory 48(12): 3140-3150 (2002) - [c17]Yaoyong Li, Hugo Zaragoza, Ralf Herbrich, John Shawe-Taylor, Jaz S. Kandola:
The Perceptron Algorithm with Uneven Margins. ICML 2002: 379-386 - [c16]Neil D. Lawrence, Matthias W. Seeger, Ralf Herbrich:
Fast Sparse Gaussian Process Methods: The Informative Vector Machine. NIPS 2002: 609-616 - [c15]Stephen E. Robertson, Steve Walker, Hugo Zaragoza, Ralf Herbrich:
Microsoft Cambridge at TREC 2002: Filtering Track. TREC 2002 - 2001
- [b1]Ralf Herbrich:
Learning linear classifiers: theory and algorithms. Technical University of Berlin, Germany, 2001, pp. 1-202 - [j1]Ralf Herbrich, Thore Graepel, Colin Campbell:
Bayes Point Machines. J. Mach. Learn. Res. 1: 245-279 (2001) - [c14]Bernhard Schölkopf, Ralf Herbrich, Alexander J. Smola:
A Generalized Representer Theorem. COLT/EuroCOLT 2001: 416-426 - [c13]Thore Graepel, Mike Goutrié, Marco Krüger, Ralf Herbrich:
Learning on Graphs in the Game of Go. ICANN 2001: 347-352 - [c12]Ralf Herbrich, Robert C. Williamson:
Algorithmic Luckiness. NIPS 2001: 391-397 - 2000
- [c11]Thore Graepel, Ralf Herbrich, John Shawe-Taylor:
Generalisation Error Bounds for Sparse Linear Classifiers. COLT 2000: 298-303 - [c10]Ralf Herbrich, Thore Graepel, John Shawe-Taylor:
Sparsity vs. Large Margins for Linear Classifiers. COLT 2000: 304-308 - [c9]Ralf Herbrich, Thore Graepel, Colin Campbell:
Robust Bayes Point Machines. ESANN 2000: 49-54 - [c8]Thore Graepel, Ralf Herbrich, Robert C. Williamson:
From Margin to Sparsity. NIPS 2000: 210-216 - [c7]Ralf Herbrich, Thore Graepel:
A PAC-Bayesian Margin Bound for Linear Classifiers: Why SVMs work. NIPS 2000: 224-230 - [c6]Thore Graepel, Ralf Herbrich:
The Kernel Gibbs Sampler. NIPS 2000: 514-520 - [c5]Ralf Herbrich, Thore Graepel:
Large Scale Bayes Point Machines. NIPS 2000: 528-534
1990 – 1999
- 1999
- [c4]Thore Graepel, Ralf Herbrich, Klaus Obermayer:
Bayesian Transduction. NIPS 1999: 456-462 - 1998
- [c3]Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra, Klaus Obermayer:
Classification on Pairwise Proximity Data. NIPS 1998: 438-444 - 1997
- [c2]Tobias Scheffer, Ralf Herbrich:
Unbiased Assesment of Learning Algorithms. IJCAI (2) 1997: 798-803 - 1996
- [c1]Tobias Scheffer, Ralf Herbrich, Fritz Wysotzki:
Efficient Theta-Subsumption Based on Graph Algorithms. Inductive Logic Programming Workshop 1996: 212-228
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-25 22:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint