default search action
Sergei V. Kalinin
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j16]Mani Valleti, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Deep kernel methods learn better: from cards to process optimization. Mach. Learn. Sci. Technol. 5(1): 15012 (2024) - [i38]Boris N. Slautin, Yongtao Liu, Hiroshi Funakubo, Sergei V. Kalinin:
Unraveling the Impact of Initial Choices and In-Loop Interventions on Learning Dynamics in Autonomous Scanning Probe Microscopy. CoRR abs/2402.00071 (2024) - [i37]Boris N. Slautin, Utkarsh Pratiush, Ilia N. Ivanov, Yongtao Liu, Rohit Pant, Xiaohang Zhang, Ichiro Takeuchi, Maxim A. Ziatdinov, Sergei V. Kalinin:
Co-orchestration of Multiple Instruments to Uncover Structure-Property Relationships in Combinatorial Libraries. CoRR abs/2402.02198 (2024) - [i36]Arpan Biswas, Sai Mani Prudhvi Valleti, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Towards accelerating physical discovery via non-interactive and interactive multi-fidelity Bayesian Optimization: Current challenges and future opportunities. CoRR abs/2402.13402 (2024) - [i35]Ayana Ghosh, Maxim A. Ziatdinov, Sergei V. Kalinin:
Active Deep Kernel Learning of Molecular Functionalities: Realizing Dynamic Structural Embeddings. CoRR abs/2403.01234 (2024) - [i34]Utkarsh Pratiush, Kevin M. Roccapriore, Yongtao Liu, Gerd Duscher, Maxim A. Ziatdinov, Sergei V. Kalinin:
Building Workflows for Interactive Human in the Loop Automated Experiment (hAE) in STEM-EELS. CoRR abs/2404.07381 (2024) - [i33]Boris N. Slautin, Yongtao Liu, Hiroshi Funakubo, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Bayesian Co-navigation: Dynamic Designing of the Materials Digital Twins via Active Learning. CoRR abs/2404.12899 (2024) - [i32]Kamyar Barakati, Hui Yuan, Amit Goyal, Sergei V. Kalinin:
Physics-based reward driven image analysis in microscopy. CoRR abs/2404.14146 (2024) - [i31]Yu Liu, Utkarsh Pratiush, Jason Bemis, Roger Proksch, Reece Emery, Philip D. Rack, Yu-Chen Liu, Jan-Chi Yang, Stanislav Udovenko, Susan Trolier-McKinstry, Sergei V. Kalinin:
Integration of Scanning Probe Microscope with High-Performance Computing: fixed-policy and reward-driven workflows implementation. CoRR abs/2405.12300 (2024) - [i30]Utkarsh Pratiush, Austin Houston, Sergei V. Kalinin, Gerd Duscher:
Implementing dynamic high-performance computing supported workflows on Scanning Transmission Electron Microscope. CoRR abs/2406.11018 (2024) - [i29]Aditya Raghavan, Utkarsh Pratiush, Mani Valleti, Richard Liu, Reece Emery, Hiroshi Funakubo, Yongtao Liu, Philip D. Rack, Sergei V. Kalinin:
Invariant Discovery of Features Across Multiple Length Scales: Applications in Microscopy and Autonomous Materials Characterization. CoRR abs/2408.00229 (2024) - [i28]Yu Liu, RogerProksch, Jason Bemis, Utkarsh Pratiush, Astita Dubey, Mahshid Ahmadi, Reece Emery, Philip D. Rack, Yu-Chen Liu, Jan-Chi Yang, Sergei V. Kalinin:
Machine Learning-Based Reward-Driven Tuning of Scanning Probe Microscopy: Towards Fully Automated Microscopy. CoRR abs/2408.04055 (2024) - [i27]Kamyar Barakati, Utkarsh Pratiush, Austin Houston, Gerd Duscher, Sergei V. Kalinin:
Unsupervised Reward-Driven Image Segmentation in Automated Scanning Transmission Electron Microscopy Experiments. CoRR abs/2409.12462 (2024) - [i26]Boris N. Slautin, Yu Liu, Jan Dec, Vladimir V. Shvartsman, Doru C. Lupascu, Maxim A. Ziatdinov, Sergei V. Kalinin:
Measurements with Noise: Bayesian Optimization for Co-optimizing Noise and Property Discovery in Automated Experiments. CoRR abs/2410.02717 (2024) - [i25]Mani Valleti, Aditya Raghavan, Sergei V. Kalinin:
Rapid optimization in high dimensional space by deep kernel learning augmented genetic algorithms. CoRR abs/2410.03173 (2024) - [i24]Michael J. Kenney, Katerina G. Malollari, Sergei V. Kalinin, Maxim A. Ziatdinov:
Predicting Battery Capacity Fade Using Probabilistic Machine Learning Models With and Without Pre-Trained Priors. CoRR abs/2410.06422 (2024) - 2023
- [j15]Sheryl Sanchez, Yongtao Liu, Jonghee Yang, Sergei V. Kalinin, Maxim A. Ziatdinov, Mahshid Ahmadi:
Exploring the Evolution of Metal Halide Perovskites via Latent Representations of the Photoluminescent Spectra. Adv. Intell. Syst. 5(5) (2023) - [j14]Arpan Biswas, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Optimizing training trajectories in variational autoencoders via latent Bayesian optimization approach *. Mach. Learn. Sci. Technol. 4(1): 15011 (2023) - [j13]Arpan Biswas, Maxim A. Ziatdinov, Sergei V. Kalinin:
Combining variational autoencoders and physical bias for improved microscopy data analysis ∗. Mach. Learn. Sci. Technol. 4(4): 45004 (2023) - [j12]Maxim A. Ziatdinov, Chun Yin Wong, Sergei V. Kalinin:
Finding simplicity: unsupervised discovery of features, patterns, and order parameters via shift-invariant variational autoencoders *. Mach. Learn. Sci. Technol. 4(4): 45033 (2023) - [j11]Yongtao Liu, Anna N. Morozovska, Eugene A. Eliseev, Kyle P. Kelley, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials. Patterns 4(3): 100704 (2023) - [j10]Yongtao Liu, Maxim A. Ziatdinov, Rama K. Vasudevan, Sergei V. Kalinin:
Explainability and human intervention in autonomous scanning probe microscopy. Patterns 4(11): 100858 (2023) - [i23]Ayana Ghosh, Sergei V. Kalinin, Maxim A. Ziatdinov:
Discovery of structure-property relations for molecules via hypothesis-driven active learning over the chemical space. CoRR abs/2301.02665 (2023) - [i22]Arpan Biswas, Maxim A. Ziatdinov, Sergei V. Kalinin:
Combining Variational Autoencoders and Physical Bias for Improved Microscopy Data Analysis. CoRR abs/2302.04216 (2023) - [i21]Mani Valleti, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Deep Kernel Methods Learn Better: From Cards to Process Optimization. CoRR abs/2303.14554 (2023) - [i20]Mani Valleti, Yongtao Liu, Sergei V. Kalinin:
Physics and Chemistry from Parsimonious Representations: Image Analysis via Invariant Variational Autoencoders. CoRR abs/2303.18236 (2023) - [i19]Sergei V. Kalinin, Debangshu Mukherjee, Kevin M. Roccapriore, Ben Blaiszik, Ayana Ghosh, Maxim A. Ziatdinov, Anees Al-Najjar, Christina Doty, Sarah Akers, Nageswara S. V. Rao, Joshua C. Agar, Steven R. Spurgeon:
Deep Learning for Automated Experimentation in Scanning Transmission Electron Microscopy. CoRR abs/2304.02048 (2023) - [i18]Arpan Biswas, Yongtao Liu, Nicole Creange, Yu-Chen Liu, Stephen Jesse, Jan-Chi Yang, Sergei V. Kalinin, Maxim A. Ziatdinov, Rama K. Vasudevan:
A dynamic Bayesian optimized active recommender system for curiosity-driven Human-in-the-loop automated experiments. CoRR abs/2304.02484 (2023) - [i17]Sergei V. Kalinin, Yongtao Liu, Arpan Biswas, Gerd Duscher, Utkarsh Pratiush, Kevin Roccapriore, Maxim A. Ziatdinov, Rama K. Vasudevan:
Human-in-the-loop: The future of Machine Learning in Automated Electron Microscopy. CoRR abs/2310.05018 (2023) - [i16]Max Schwarzer, Jesse Farebrother, Joshua Greaves, Ekin Dogus Cubuk, Rishabh Agarwal, Aaron C. Courville, Marc G. Bellemare, Sergei V. Kalinin, Igor Mordatch, Pablo Samuel Castro, Kevin M. Roccapriore:
Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy. CoRR abs/2311.17894 (2023) - 2022
- [j9]Maxim A. Ziatdinov, Ayana Ghosh, Sergei V. Kalinin:
Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process. Mach. Learn. Sci. Technol. 3(1): 15003 (2022) - [j8]Nicole Creange, Ondrej Dyck, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Towards automating structural discovery in scanning transmission electron microscopy *. Mach. Learn. Sci. Technol. 3(1): 15024 (2022) - [j7]Rama K. Vasudevan, Erick Orozco, Sergei V. Kalinin:
Discovering mechanisms for materials microstructure optimization via reinforcement learning of a generative model. Mach. Learn. Sci. Technol. 3(4): 4 (2022) - [j6]Yongtao Liu, Kyle P. Kelley, Rama K. Vasudevan, Hiroshi Funakubo, Maxim A. Ziatdinov, Sergei V. Kalinin:
Experimental discovery of structure-property relationships in ferroelectric materials via active learning. Nat. Mach. Intell. 4(4): 341-350 (2022) - [j5]Maxim A. Ziatdinov, Ayana Ghosh, Chun Yin Wong, Sergei V. Kalinin:
AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. Nat. Mac. Intell. 4(12): 1101-1112 (2022) - [c7]Anees Al-Najjar, Nageswara S. V. Rao, Ramanan Sankaran, Maxim A. Ziatdinov, Debangshu Mukherjee, Olga Ovchinnikova, Kevin Roccapriore, Andrew R. Lupini, Sergei V. Kalinin:
Enabling Autonomous Electron Microscopy for Networked Computation and Steering. e-Science 2022: 267-277 - [c6]Zhuowen Zhao, Tanny Chavez, Elizabeth Holman, Guanhua Hao, Adam Green, Harinarayan Krishnan, Dylan McReynolds, Ronald Pandolfi, Eric J. Roberts, Petrus H. Zwart, Howard Yanxon, Nicholas Schwarz, Subramanian Sankaranarayanan, Sergei V. Kalinin, Apurva Mehta, Stuart Campbell, Alexander Hexemer:
MLExchange: A web-based platform enabling exchangeable machine learning workflows for scientific studies. XLOOP@SC 2022: 10-15 - [i15]Maxim A. Ziatdinov, Yongtao Liu, Sergei V. Kalinin:
Active learning in open experimental environments: selecting the right information channel(s) based on predictability in deep kernel learning. CoRR abs/2203.10181 (2022) - [i14]Maxim A. Ziatdinov, Yongtao Liu, Kyle P. Kelley, Rama K. Vasudevan, Sergei V. Kalinin:
Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian Processes to Hypothesis Learning. CoRR abs/2205.15458 (2022) - [i13]Arpan Biswas, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Optimizing Training Trajectories in Variational Autoencoders via Latent Bayesian Optimization Approach. CoRR abs/2207.00128 (2022) - [i12]Zhuowen Zhao, Tanny Chavez, Elizabeth Holman, Guanhua Hao, Adam Green, Harinarayan Krishnan, Dylan McReynolds, Ronald Pandolfi, Eric J. Roberts, Petrus H. Zwart, Howard Yanxon, Nicholas Schwarz, Subramanian Sankaranarayanan, Sergei V. Kalinin, Apurva Mehta, Stuart Campbell, Alexander Hexemer:
MLExchange: A web-based platform enabling exchangeable machine learning workflows. CoRR abs/2208.09751 (2022) - [i11]Sergei V. Kalinin, Rama K. Vasudevan, Yongtao Liu, Ayana Ghosh, Kevin Roccapriore, Maxim A. Ziatdinov:
Microscopy is All You Need. CoRR abs/2210.06526 (2022) - [i10]Anees Al-Najjar, Nageswara S. V. Rao, Ramanan Sankaran, Maxim A. Ziatdinov, Debangshu Mukherjee, Olga Ovchinnikova, Kevin Roccapriore, Andrew R. Lupini, Sergei V. Kalinin:
Enabling Autonomous Electron Microscopy for Networked Computation and Steering. CoRR abs/2210.09791 (2022) - 2021
- [j4]Nicole Creange, Kyle P. Kelley, C. Smith, D. Sando, Oliver Paull, N. Valanoor, S. Somnath, S. Jesse, Sergei V. Kalinin, Rama K. Vasudevan:
Propagation of priors for more accurate and efficient spectroscopic functional fits and their application to ferroelectric hysteresis. Mach. Learn. Sci. Technol. 2(4): 45002 (2021) - [j3]Yongtao Liu, Rama K. Vasudevan, Kyle K. Kelley, Dohyung Kim, Yogesh Sharma, Mahshid Ahmadi, Sergei V. Kalinin, Maxim A. Ziatdinov:
Decoding the shift-invariant data: applications for band-excitation scanning probe microscopy *. Mach. Learn. Sci. Technol. 2(4): 45028 (2021) - [c5]Suhas Somnath, Rama K. Vasudevan, Stephen Jesse, Sergei V. Kalinin, Nageswara S. V. Rao, Christopher Brumgard, Feiyi Wang, Olga A. Kuchar, Arjun Shankar, Ben Mintz, Elke Arenholz, J. Robert Michael, Sarp Oral:
Building an Integrated Ecosystem of Computational and Observational Facilities to Accelerate Scientific Discovery. SMC 2021: 58-75 - [c4]Pravallika Devineni, Panchapakesan Ganesh, Nikhil Sivadas, Abhijeet Dhakane, Ketan Maheshwari, Drahomira Herrmannova, Ramakrishnan Kannan, Seung-Hwan Lim, Thomas E. Potok, Jordan B. Chipka, Priyantha Mudalige, Mark Coletti, Sajal Dash, Arnab Kumar Paul, Sarp Oral, Feiyi Wang, Bill Kay, Melissa R. Allen-Dumas, Christa Brelsford, Joshua R. New, Andy Berres, Kuldeep R. Kurte, Jibonananda Sanyal, Levi Sweet, Chathika Gunaratne, Maxim A. Ziatdinov, Rama K. Vasudevan, Sergei V. Kalinin, Olivera Kotevska, Jean C. Bilheux, Hassina Z. Bilheux, Garrett E. Granroth, Thomas Proffen, Rick Riedel, Peter F. Peterson, Shruti R. Kulkarni, Kyle P. Kelley, Stephen Jesse, Maryam Parsa:
Smoky Mountain Data Challenge 2021: An Open Call to Solve Scientific Data Challenges Using Advanced Data Analytics and Edge Computing. SMC 2021: 361-382 - [i9]Ayana Ghosh, Bobby G. Sumpter, Ondrej Dyck, Sergei V. Kalinin, Maxim A. Ziatdinov:
Ensemble learning and iterative training (ELIT) machine learning: applications towards uncertainty quantification and automated experiment in atom-resolved microscopy. CoRR abs/2101.08449 (2021) - [i8]Sergei V. Kalinin, Maxim A. Ziatdinov, Jacob D. Hinkle, Stephen Jesse, Ayana Ghosh, Kyle P. Kelley, Andrew R. Lupini, Bobby G. Sumpter, Rama K. Vasudevan:
Automated and Autonomous Experiment in Electron and Scanning Probe Microscopy. CoRR abs/2103.12165 (2021) - [i7]Maxim A. Ziatdinov, Sergei V. Kalinin:
Robust Feature Disentanglement in Imaging Data via Joint Invariant Variational Autoencoders: from Cards to Atoms. CoRR abs/2104.10180 (2021) - [i6]Yongtao Liu, Rama K. Vasudevan, Kyle P. Kelley, Dohyung Kim, Yogesh Sharma, Mahshid Ahmadi, Sergei V. Kalinin, Maxim A. Ziatdinov:
Decoding the shift-invariant data: applications for band-excitation scanning probe microscopy. CoRR abs/2104.10207 (2021) - [i5]Maxim A. Ziatdinov, Ayana Ghosh, Tommy Wong, Sergei V. Kalinin:
AtomAI: A Deep Learning Framework for Analysis of Image and Spectroscopy Data in (Scanning) Transmission Electron Microscopy and Beyond. CoRR abs/2105.07485 (2021) - [i4]Maxim A. Ziatdinov, Muammer Yusuf Yaman, Yongtao Liu, David Ginger, Sergei V. Kalinin:
Semi-supervised learning of images with strong rotational disorder: assembling nanoparticle libraries. CoRR abs/2105.11475 (2021) - [i3]Maxim A. Ziatdinov, Chun Yin Wong, Sergei V. Kalinin:
Finding simplicity: unsupervised discovery of features, patterns, and order parameters via shift-invariant variational autoencoders. CoRR abs/2106.12472 (2021) - 2020
- [j2]Xin Li, Dohyung Kim, Sabine M. Neumayer, Mahshid Ahmadi, Sergei V. Kalinin:
Estimating Preisach Density via Subset Selection. IEEE Access 8: 61767-61774 (2020) - [j1]M. P. Oxley, Junqi Yin, N. Borodinov, Suhas Somnath, Maxim A. Ziatdinov, Andrew R. Lupini, Stephen Jesse, Rama K. Vasudevan, Sergei V. Kalinin:
Deep learning of interface structures from simulated 4D STEM data: cation intermixing vs. roughening. Mach. Learn. Sci. Technol. 1(4): 04 (2020) - [i2]Rama K. Vasudevan, Maxim A. Ziatdinov, Lukas Vlcek, Sergei V. Kalinin:
Off-the-shelf deep learning is not enough: parsimony, Bayes and causality. CoRR abs/2005.01557 (2020)
2010 – 2019
- 2018
- [c3]Robert M. Patton, J. Travis Johnston, Steven R. Young, Catherine D. Schuman, Don D. March, Thomas E. Potok, Derek C. Rose, Seung-Hwan Lim, Thomas P. Karnowski, Maxim A. Ziatdinov, Sergei V. Kalinin:
167-PFlops deep learning for electron microscopy: from learning physics to atomic manipulation. SC 2018: 50:1-50:11 - 2017
- [c2]Patrick Ponath, Agham B. Posadas, Yuan Ren, Xiaoyu Wu, Keji Lai, Alex Demkov, Michael Schmidt, Ray Duffy, Paul K. Hurley, Jian Wang, Chadwin D. Young, Rama K. Vasudevan, M. Baris Okatan, Stephen Jesse, Sergei V. Kalinin:
Advances of the development of a ferroelectric field-effect transistor on Ge(001). ICICDT 2017: 1-3 - 2016
- [c1]Eric J. Lingerfelt, Alex Belianinov, Eirik Endeve, O. Ovchinnikov, Suhas Somnath, Jose M. Borreguero, N. Grodowitz, B. Park, Richard K. Archibald, Christopher T. Symons, Sergei V. Kalinin, O. E. Bronson Messer, Mallikarjun Shankar, Stephen Jesse:
BEAM: A Computational Workflow System for Managing and Modeling Material Characterization Data in HPC Environments. ICCS 2016: 2276-2280 - 2015
- [i1]Sergei V. Kalinin, Artem Maksov:
What makes us a community: structure, correlations, and success in scientific world. CoRR abs/1502.03439 (2015)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:18 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint