default search action
Jan-Willem van de Meent
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c34]Julius Kunze, Daniel Severo, Giulio Zani, Jan-Willem van de Meent, James Townsend:
Entropy Coding of Unordered Data Structures. ICLR 2024 - [c33]Denis Jered McInerney, William Dickinson, Lucy C. Flynn, Andrea Young, Geoffrey Young, Jan-Willem van de Meent, Byron C. Wallace:
Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. NAACL-HLT 2024: 7193-7210 - [i48]Denis Jered McInerney, William Dickinson, Lucy C. Flynn, Andrea Young, Geoffrey S. Young, Jan-Willem van de Meent, Byron C. Wallace:
Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. CoRR abs/2402.10109 (2024) - [i47]Heiko Zimmermann, Christian A. Naesseth, Jan-Willem van de Meent:
VISA: Variational Inference with Sequential Sample-Average Approximations. CoRR abs/2403.09429 (2024) - [i46]Mustafa Mert Çelikok, Frans A. Oliehoek, Jan-Willem van de Meent:
Inverse Concave-Utility Reinforcement Learning is Inverse Game Theory. CoRR abs/2405.19024 (2024) - [i45]Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, Jan-Willem van de Meent:
Variational Flow Matching for Graph Generation. CoRR abs/2406.04843 (2024) - [i44]Julius Kunze, Daniel Severo, Giulio Zani, Jan-Willem van de Meent, James Townsend:
Entropy Coding of Unordered Data Structures. CoRR abs/2408.08837 (2024) - [i43]Ondrej Biza, Thomas Weng, Lingfeng Sun, Karl Schmeckpeper, Tarik Kelestemur, Yecheng Jason Ma, Robert Platt, Jan-Willem van de Meent, Lawson L. S. Wong:
On-Robot Reinforcement Learning with Goal-Contrastive Rewards. CoRR abs/2410.19989 (2024) - 2023
- [j4]Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, Christian A. Naesseth:
A Variational Perspective on Generative Flow Networks. Trans. Mach. Learn. Res. 2023 (2023) - [c32]Ondrej Biza, Skye Thompson, Kishore Reddy Pagidi, Abhinav Kumar, Elise van der Pol, Robin Walters, Thomas Kipf, Jan-Willem van de Meent, Lawson L. S. Wong, Robert Platt:
One-shot Imitation Learning via Interaction Warping. CoRL 2023: 2519-2536 - [c31]Denis Jered McInerney, Geoffrey Young, Jan-Willem van de Meent, Byron C. Wallace:
CHiLL: Zero-shot Custom Interpretable Feature Extraction from Clinical Notes with Large Language Models. EMNLP (Findings) 2023: 8477-8494 - [c30]Babak Esmaeili, Robin Walters, Heiko Zimmermann, Jan-Willem van de Meent:
Topological Obstructions and How to Avoid Them. NeurIPS 2023 - [c29]Eli Sennesh, Jan-Willem van de Meent:
String Diagrams with Factorized Densities. ACT 2023: 260-278 - [e1]Francisco J. R. Ruiz, Jennifer G. Dy, Jan-Willem van de Meent:
International Conference on Artificial Intelligence and Statistics, 25-27 April 2023, Palau de Congressos, Valencia, Spain. Proceedings of Machine Learning Research 206, PMLR 2023 [contents] - [i42]Denis Jered McInerney, Geoffrey Young, Jan-Willem van de Meent, Byron C. Wallace:
CHiLL: Zero-shot Custom Interpretable Feature Extraction from Clinical Notes with Large Language Models. CoRR abs/2302.12343 (2023) - [i41]Ondrej Biza, Skye Thompson, Kishore Reddy Pagidi, Abhinav Kumar, Elise van der Pol, Robin Walters, Thomas Kipf, Jan-Willem van de Meent, Lawson L. S. Wong, Robert Platt:
One-shot Imitation Learning via Interaction Warping. CoRR abs/2306.12392 (2023) - [i40]Babak Esmaeili, Robin Walters, Heiko Zimmermann, Jan-Willem van de Meent:
Topological Obstructions and How to Avoid Them. CoRR abs/2312.07529 (2023) - 2022
- [j3]Zulqarnain Khan, Yiyu Wang, Eli Sennesh, Jennifer G. Dy, Sarah Ostadabbas, Jan-Willem van de Meent, J. Benjamin Hutchinson, Ajay B. Satpute:
A Computational Neural Model for Mapping Degenerate Neural Architectures. Neuroinformatics 20(4): 965-979 (2022) - [j2]Niklas Smedemark-Margulies, Robin Walters, Heiko Zimmermann, Lucas Laird, Christian van der Loo, Neela Kaushik, Rajmonda Caceres, Jan-Willem van de Meent:
Probabilistic program inference in network-based epidemiological simulations. PLoS Comput. Biol. 18(11): 1010591 (2022) - [c28]Denis Jered McInerney, Geoffrey Young, Jan-Willem van de Meent, Byron C. Wallace:
That's the Wrong Lung! Evaluating and Improving the Interpretability of Unsupervised Multimodal Encoders for Medical Data. EMNLP 2022: 3626-3648 - [c27]Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan-Willem van de Meent, Robin Walters:
Learning Symmetric Embeddings for Equivariant World Models. ICML 2022: 17372-17389 - [c26]Eli Sennesh, Jordan Theriault, Jan-Willem van de Meent, Lisa Feldman Barrett, Karen S. Quigley:
Deriving Time-Averaged Active Inference from Control Principles. IWAI 2022: 355-370 - [c25]Peyman Bateni, Jarred Barber, Jan-Willem van de Meent, Frank Wood:
Enhancing Few-Shot Image Classification with Unlabelled Examples. WACV 2022: 1597-1606 - [i39]Peyman Bateni, Jarred Barber, Raghav Goyal, Vaden Masrani, Jan-Willem van de Meent, Leonid Sigal, Frank Wood:
Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning. CoRR abs/2201.05151 (2022) - [i38]Ondrej Biza, Thomas Kipf, David Klee, Robert Platt Jr., Jan-Willem van de Meent, Lawson L. S. Wong:
Factored World Models for Zero-Shot Generalization in Robotic Manipulation. CoRR abs/2202.05333 (2022) - [i37]Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan-Willem van de Meent, Robin Walters:
Learning Symmetric Embeddings for Equivariant World Models. CoRR abs/2204.11371 (2022) - [i36]Ondrej Biza, Robert Platt, Jan-Willem van de Meent, Lawson L. S. Wong, Thomas Kipf:
Binding Actions to Objects in World Models. CoRR abs/2204.13022 (2022) - [i35]Eli Sennesh, Jordan Theriault, Jan-Willem van de Meent, Lisa Feldman Barrett, Karen S. Quigley:
Deriving time-averaged active inference from control principles. CoRR abs/2208.10601 (2022) - [i34]Denis Jered McInerney, Geoffrey Young, Jan-Willem van de Meent, Byron C. Wallace:
That's the Wrong Lung! Evaluating and Improving the Interpretability of Unsupervised Multimodal Encoders for Medical Data. CoRR abs/2210.06565 (2022) - [i33]Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, Christian A. Naesseth:
A Variational Perspective on Generative Flow Networks. CoRR abs/2210.07992 (2022) - [i32]James Townsend, Jan-Willem van de Meent:
Verified Reversible Programming for Verified Lossless Compression. CoRR abs/2211.09676 (2022) - 2021
- [c24]Abdelrahman Madkour, Stacy Marsella, Casper Harteveld, Magy Seif El-Nasr, Jan-Willem van de Meent:
Guiding Generative Graph Grammars of Dungeon Mission Graphs via Examples. AIIDE Workshops 2021 - [c23]Alican Bozkurt, Babak Esmaeili, Jean-Baptiste Tristan, Dana H. Brooks, Jennifer G. Dy, Jan-Willem van de Meent:
Rate-Regularization and Generalization in Variational Autoencoders. AISTATS 2021: 3880-3888 - [c22]Ondrej Biza, Dian Wang, Robert Platt Jr., Jan-Willem van de Meent, Lawson L. S. Wong:
Action Priors for Large Action Spaces in Robotics. AAMAS 2021: 205-213 - [c21]Xiongyi Zhang, Jan-Willem van de Meent, Byron C. Wallace:
Disentangling Representations of Text by Masking Transformers. EMNLP (1) 2021: 778-791 - [c20]Hao Wu, Babak Esmaeili, Michael L. Wick, Jean-Baptiste Tristan, Jan-Willem van de Meent:
Conjugate Energy-Based Models. ICML 2021: 11228-11239 - [c19]Silvio Amir, Jan-Willem van de Meent, Byron C. Wallace:
On the Impact of Random Seeds on the Fairness of Clinical Classifiers. NAACL-HLT 2021: 3808-3823 - [c18]Heiko Zimmermann, Hao Wu, Babak Esmaeili, Jan-Willem van de Meent:
Nested Variational Inference. NeurIPS 2021: 20423-20435 - [c17]Sam Stites, Heiko Zimmermann, Hao Wu, Eli Sennesh, Jan-Willem van de Meent:
Learning proposals for probabilistic programs with inference combinators. UAI 2021: 1056-1066 - [i31]Ondrej Biza, Dian Wang, Robert Platt Jr., Jan-Willem van de Meent, Lawson L. S. Wong:
Action Priors for Large Action Spaces in Robotics. CoRR abs/2101.04178 (2021) - [i30]Niklas Smedemark-Margulies, Jung Yeon Park, Max Daniels, Rose Yu, Jan-Willem van de Meent, Paul Hand:
Generator Surgery for Compressed Sensing. CoRR abs/2102.11163 (2021) - [i29]Sam Stites, Heiko Zimmermann, Hao Wu, Eli Sennesh, Jan-Willem van de Meent:
Learning Proposals for Probabilistic Programs with Inference Combinators. CoRR abs/2103.00668 (2021) - [i28]Silvio Amir, Jan-Willem van de Meent, Byron C. Wallace:
On the Impact of Random Seeds on the Fairness of Clinical Classifiers. CoRR abs/2104.06338 (2021) - [i27]Xiongyi Zhang, Jan-Willem van de Meent, Byron C. Wallace:
Disentangling Representations of Text by Masking Transformers. CoRR abs/2104.07155 (2021) - [i26]Heiko Zimmermann, Hao Wu, Babak Esmaeili, Jan-Willem van de Meent:
Nested Variational Inference. CoRR abs/2106.11302 (2021) - [i25]Hao Wu, Babak Esmaeili, Michael L. Wick, Jean-Baptiste Tristan, Jan-Willem van de Meent:
Conjugate Energy-Based Models. CoRR abs/2106.13798 (2021) - 2020
- [c16]Hao Wu, Heiko Zimmermann, Eli Sennesh, Tuan Anh Le, Jan-Willem van de Meent:
Amortized Population Gibbs Samplers with Neural Sufficient Statistics. ICML 2020: 10421-10431 - [c15]Denis Jered McInerney, Borna Dabiri, Anne-Sophie Touret, Geoffrey Young, Jan-Willem van de Meent, Byron C. Wallace:
Query-Focused EHR Summarization to Aid Imaging Diagnosis. MLHC 2020: 632-659 - [c14]Eli Sennesh, Zulqarnain Khan, Yiyu Wang, J. Benjamin Hutchinson, Ajay B. Satpute, Jennifer G. Dy, Jan-Willem van de Meent:
Neural Topographic Factor Analysis for fMRI Data. NeurIPS 2020 - [i24]Ondrej Biza, Robert Platt Jr., Jan-Willem van de Meent, Lawson L. S. Wong:
Learning discrete state abstractions with deep variational inference. CoRR abs/2003.04300 (2020) - [i23]Amirreza Farnoosh, Behnaz Rezaei, Eli Zachary Sennesh, Zulqarnain Khan, Jennifer G. Dy, Ajay B. Satpute, J. Benjamin Hutchinson, Jan-Willem van de Meent, Sarah Ostadabbas:
Deep Markov Spatio-Temporal Factorization. CoRR abs/2003.09779 (2020) - [i22]Denis Jered McInerney, Borna Dabiri, Anne-Sophie Touret, Geoffrey Young, Jan-Willem van de Meent, Byron C. Wallace:
Query-Focused EHR Summarization to Aid Imaging Diagnosis. CoRR abs/2004.04645 (2020) - [i21]Peyman Bateni, Jarred Barber, Jan-Willem van de Meent, Frank Wood:
Improving Few-Shot Visual Classification with Unlabelled Examples. CoRR abs/2006.12245 (2020)
2010 – 2019
- 2019
- [c13]Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, N. Siddharth, Brooks Paige, Dana H. Brooks, Jennifer G. Dy, Jan-Willem van de Meent:
Structured Disentangled Representations. AISTATS 2019: 2525-2534 - [c12]Babak Esmaeili, Hongyi Huang, Byron C. Wallace, Jan-Willem van de Meent:
Structured Neural Topic Models for Reviews. AISTATS 2019: 3429-3439 - [i20]Eli Sennesh, Zulqarnain Khan, Jennifer G. Dy, Ajay B. Satpute, J. Benjamin Hutchinson, Jan-Willem van de Meent:
Neural Topographic Factor Analysis for fMRI Data. CoRR abs/1906.08901 (2019) - [i19]Hao Wu, Heiko Zimmermann, Eli Sennesh, Tuan Anh Le, Jan-Willem van de Meent:
Amortized Population Gibbs Samplers with Neural Sufficient Statistics. CoRR abs/1911.01382 (2019) - [i18]Alican Bozkurt, Babak Esmaeili, Dana H. Brooks, Jennifer G. Dy, Jan-Willem van de Meent:
Evaluating Combinatorial Generalization in Variational Autoencoders. CoRR abs/1911.04594 (2019) - 2018
- [c11]Sarthak Jain, Edward Banner, Jan-Willem van de Meent, Iain James Marshall, Byron C. Wallace:
Learning Disentangled Representations of Texts with Application to Biomedical Abstracts. EMNLP 2018: 4683-4693 - [i17]Babak Esmaeili, Hao Wu, Sarthak Jain, N. Siddharth, Brooks Paige, Jan-Willem van de Meent:
Hierarchical Disentangled Representations. CoRR abs/1804.02086 (2018) - [i16]Sarthak Jain, Edward Banner, Jan-Willem van de Meent, Iain James Marshall, Byron C. Wallace:
Learning Disentangled Representations of Texts with Application to Biomedical Abstracts. CoRR abs/1804.07212 (2018) - [i15]Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, Frank Wood:
An Introduction to Probabilistic Programming. CoRR abs/1809.10756 (2018) - [i14]Xiaoyu Lu, Tom Rainforth, Yuan Zhou, Jan-Willem van de Meent, Yee Whye Teh:
On Exploration, Exploitation and Learning in Adaptive Importance Sampling. CoRR abs/1810.13296 (2018) - [i13]Eli Sennesh, Adam Scibior, Hao Wu, Jan-Willem van de Meent:
Composing Modeling and Inference Operations with Probabilistic Program Combinators. CoRR abs/1811.05965 (2018) - [i12]Iris Rubi Seaman, Jan-Willem van de Meent, David Wingate:
Modeling Theory of Mind for Autonomous Agents with Probabilistic Programs. CoRR abs/1812.01569 (2018) - [i11]Babak Esmaeili, Hongyi Huang, Byron C. Wallace, Jan-Willem van de Meent:
Structured Representations for Reviews: Aspect-Based Variational Hidden Factor Models. CoRR abs/1812.05035 (2018) - [i10]Alican Bozkurt, Babak Esmaeili, Dana H. Brooks, Jennifer G. Dy, Jan-Willem van de Meent:
Can VAEs Generate Novel Examples? CoRR abs/1812.09624 (2018) - 2017
- [c10]Siddharth Narayanaswamy, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman, Pushmeet Kohli, Frank D. Wood, Philip H. S. Torr:
Learning Disentangled Representations with Semi-Supervised Deep Generative Models. NIPS 2017: 5925-5935 - [i9]N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Frank D. Wood, Noah D. Goodman, Pushmeet Kohli, Philip H. S. Torr:
Learning Disentangled Representations with Semi-Supervised Deep Generative Models. CoRR abs/1706.00400 (2017) - [i8]Tom Rainforth, Tuan Anh Le, Jan-Willem van de Meent, Michael A. Osborne, Frank D. Wood:
Bayesian Optimization for Probabilistic Programs. CoRR abs/1707.04314 (2017) - 2016
- [c9]Jan-Willem van de Meent, Brooks Paige, David Tolpin, Frank D. Wood:
Black-Box Policy Search with Probabilistic Programs. AISTATS 2016: 1195-1204 - [c8]Tom Rainforth, Christian A. Naesseth, Fredrik Lindsten, Brooks Paige, Jan-Willem van de Meent, Arnaud Doucet, Frank D. Wood:
Interacting Particle Markov Chain Monte Carlo. ICML 2016: 2616-2625 - [c7]David Tolpin, Jan-Willem van de Meent, Hongseok Yang, Frank D. Wood:
Design and Implementation of Probabilistic Programming Language Anglican. IFL 2016: 6:1-6:12 - [c6]Tom Rainforth, Tuan Anh Le, Jan-Willem van de Meent, Michael A. Osborne, Frank D. Wood:
Bayesian Optimization for Probabilistic Programs. NIPS 2016: 280-288 - [i7]David Tolpin, Jan-Willem van de Meent, Hongseok Yang, Frank D. Wood:
Design and Implementation of Probabilistic Programming Language Anglican. CoRR abs/1608.05263 (2016) - [i6]David Janz, Brooks Paige, Tom Rainforth, Jan-Willem van de Meent, Frank D. Wood:
Probabilistic structure discovery in time series data. CoRR abs/1611.06863 (2016) - [i5]N. Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank D. Wood, Noah D. Goodman, Pushmeet Kohli, Philip H. S. Torr:
Inducing Interpretable Representations with Variational Autoencoders. CoRR abs/1611.07492 (2016) - 2015
- [j1]Max Greenfeld, Jan-Willem van de Meent, Dmitri S. Pavlichin, Hideo Mabuchi, Chris H. Wiggins, Ruben L. Gonzalez, Daniel Herschlag:
Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data. BMC Bioinform. 16: 3:1-3:4 (2015) - [c5]Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. AISTATS 2015 - [c4]David Tolpin, Jan-Willem van de Meent, Frank D. Wood:
Probabilistic Programming in Anglican. ECML/PKDD (3) 2015: 308-311 - [c3]David Tolpin, Jan-Willem van de Meent, Brooks Paige, Frank D. Wood:
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs. ECML/PKDD (2) 2015: 311-326 - [i4]David Tolpin, Jan-Willem van de Meent, Brooks Paige, Frank D. Wood:
Adaptive Scheduling in MCMC and Probabilistic Programming. CoRR abs/1501.05677 (2015) - [i3]Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. CoRR abs/1501.06769 (2015) - [i2]Frank D. Wood, Jan-Willem van de Meent, Vikash Mansinghka:
A New Approach to Probabilistic Programming Inference. CoRR abs/1507.00996 (2015) - [i1]Jan-Willem van de Meent, David Tolpin, Brooks Paige, Frank D. Wood:
Black-Box Policy Search with Probabilistic Programs. CoRR abs/1507.04635 (2015) - 2014
- [c2]Frank D. Wood, Jan-Willem van de Meent, Vikash Mansinghka:
A New Approach to Probabilistic Programming Inference. AISTATS 2014: 1024-1032 - 2013
- [c1]Jan-Willem van de Meent, Jonathan E. Bronson, Frank D. Wood, Ruben L. Gonzalez, Chris Wiggins:
Hierarchically-coupled hidden Markov models for learning kinetic rates from single-molecule data. ICML (2) 2013: 361-369
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-30 00:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint