default search action
Larry A. Wasserman
Person information
- affiliation: Carnegie Mellon University, Pittsburgh, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j21]Isabella Verdinelli, Larry A. Wasserman:
Decorrelated Variable Importance. J. Mach. Learn. Res. 25: 7:1-7:27 (2024) - [i48]Jin-Hong Du, Kathryn Roeder, Larry A. Wasserman:
Assumption-Lean Post-Integrated Inference with Negative Control Outcomes. CoRR abs/2410.04996 (2024) - 2023
- [i47]Jin-Hong Du, Larry A. Wasserman, Kathryn Roeder:
Simultaneous inference for generalized linear models with unmeasured confounders. CoRR abs/2309.07261 (2023) - 2022
- [c41]Boyan Duan, Aaditya Ramdas, Larry A. Wasserman:
Interactive rank testing by betting. CLeaR 2022: 201-235 - 2021
- [i46]Isabella Verdinelli, Larry A. Wasserman:
Forest Guided Smoothing. CoRR abs/2103.05092 (2021) - [i45]Robin Dunn, Larry A. Wasserman, Aaditya Ramdas:
Universal Inference Meets Random Projections: A Scalable Test for Log-concavity. CoRR abs/2111.09254 (2021) - 2020
- [c40]Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, Larry A. Wasserman:
Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex. SoCG 2020: 54:1-54:19 - [c39]Boyan Duan, Aaditya Ramdas, Larry A. Wasserman:
Familywise Error Rate Control by Interactive Unmasking. ICML 2020: 2720-2729 - [c38]Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Sik Kim, Frédéric Chazal, Larry A. Wasserman:
PLLay: Efficient Topological Layer based on Persistent Landscapes. NeurIPS 2020 - [i44]Kwangho Kim, Jisu Kim, Joon Sik Kim, Frédéric Chazal, Larry A. Wasserman:
Efficient Topological Layer based on Persistent Landscapes. CoRR abs/2002.02778 (2020) - [i43]Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, Larry A. Wasserman:
The huge Package for High-dimensional Undirected Graph Estimation in R. CoRR abs/2006.14781 (2020)
2010 – 2019
- 2019
- [j20]Jisu Kim, Alessandro Rinaldo, Larry A. Wasserman:
Minimax rates for estimating the dimension of a manifold. J. Comput. Geom. 10(1): 42-95 (2019) - [c37]Jisu Kim, Jaehyeok Shin, Alessandro Rinaldo, Larry A. Wasserman:
Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension. ICML 2019: 3398-3407 - [i42]Jisu Kim, Jaehyeok Shin, Alessandro Rinaldo, Larry A. Wasserman:
Nerve Theorem on a Positive Reach set. CoRR abs/1903.06955 (2019) - 2018
- [i41]Yotam Hechtlinger, Barnabás Póczos, Larry A. Wasserman:
Cautious Deep Learning. CoRR abs/1805.09460 (2018) - 2017
- [j19]Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Larry A. Wasserman:
Robust Topological Inference: Distance To a Measure and Kernel Distance. J. Mach. Learn. Res. 18: 159:1-159:40 (2017) - [i40]Sivaraman Balakrishnan, Larry A. Wasserman:
Hypothesis Testing For Densities and High-Dimensional Multinomials: Sharp Local Minimax Rates. CoRR abs/1706.10003 (2017) - [i39]Sivaraman Balakrishnan, Larry A. Wasserman:
Hypothesis Testing for High-Dimensional Multinomials: A Selective Review. CoRR abs/1712.06120 (2017) - 2016
- [c36]Aaditya Ramdas, David Isenberg, Aarti Singh, Larry A. Wasserman:
Minimax lower bounds for linear independence testing. ISIT 2016: 965-969 - [c35]Jisu Kim, Yen-Chi Chen, Sivaraman Balakrishnan, Alessandro Rinaldo, Larry A. Wasserman:
Statistical Inference for Cluster Trees. NIPS 2016: 1831-1839 - [i38]Aaditya Ramdas, David Isenberg, Aarti Singh, Larry A. Wasserman:
Minimax Lower Bounds for Linear Independence Testing. CoRR abs/1601.06259 (2016) - [i37]Aaditya Ramdas, Aarti Singh, Larry A. Wasserman:
Classification Accuracy as a Proxy for Two Sample Testing. CoRR abs/1602.02210 (2016) - [i36]Jisu Kim, Alessandro Rinaldo, Larry A. Wasserman:
Minimax Rates for Estimating the Dimension of a Manifold. CoRR abs/1605.01011 (2016) - [i35]Mauricio Sadinle, Jing Lei, Larry A. Wasserman:
Least Ambiguous Set-Valued Classifiers with Bounded Error Levels. CoRR abs/1609.00451 (2016) - 2015
- [j18]Jing Lei, Alessandro Rinaldo, Larry A. Wasserman:
A conformal prediction approach to explore functional data. Ann. Math. Artif. Intell. 74(1-2): 29-43 (2015) - [j17]Yiye Zhang, Rema Padman, Larry A. Wasserman, Nirav Patel, Pradip Teredesai, Qizhi Xie:
On Clinical Pathway Discovery from Electronic Health Record Data. IEEE Intell. Syst. 30(1): 70-75 (2015) - [j16]Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry A. Wasserman:
Stochastic convergence of persistence landscapes and silhouettes. J. Comput. Geom. 6(2): 140-161 (2015) - [c34]Aaditya Ramdas, Sashank Jakkam Reddi, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
On the Decreasing Power of Kernel and Distance Based Nonparametric Hypothesis Tests in High Dimensions. AAAI 2015: 3571-3577 - [c33]Martin Azizyan, Aarti Singh, Larry A. Wasserman:
Efficient Sparse Clustering of High-Dimensional Non-spherical Gaussian Mixtures. AISTATS 2015 - [c32]Akshay Krishnamurthy, Kirthevasan Kandasamy, Barnabás Póczos, Larry A. Wasserman:
On Estimating L22 Divergence. AISTATS 2015 - [c31]Sashank J. Reddi, Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
On the High Dimensional Power of a Linear-Time Two Sample Test under Mean-shift Alternatives. AISTATS 2015 - [c30]Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Larry A. Wasserman:
Subsampling Methods for Persistent Homology. ICML 2015: 2143-2151 - [c29]Mutian Fu, Guangyu Xia, Roger B. Dannenberg, Larry A. Wasserman:
A Statistical View on the Expressive Timing of Piano Rolled Chords. ISMIR 2015: 578-583 - [c28]Yen-Chi Chen, Christopher R. Genovese, Shirley Ho, Larry A. Wasserman:
Optimal Ridge Detection using Coverage Risk. NIPS 2015: 316-324 - [c27]Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabás Póczos, Larry A. Wasserman, James M. Robins:
Nonparametric von Mises Estimators for Entropies, Divergences and Mutual Informations. NIPS 2015: 397-405 - [i34]Martin Azizyan, Yen-Chi Chen, Aarti Singh, Larry A. Wasserman:
Risk Bounds For Mode Clustering. CoRR abs/1505.00482 (2015) - [i33]Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
An Analysis of Active Learning With Uniform Feature Noise. CoRR abs/1505.04215 (2015) - [i32]Aaditya Ramdas, Sashank J. Reddi, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
Adaptivity and Computation-Statistics Tradeoffs for Kernel and Distance based High Dimensional Two Sample Testing. CoRR abs/1508.00655 (2015) - 2014
- [j15]Fabrizio Lecci, Alessandro Rinaldo, Larry A. Wasserman:
Statistical analysis of metric graph reconstruction. J. Mach. Learn. Res. 15(1): 3425-3446 (2014) - [c26]Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
An Analysis of Active Learning with Uniform Feature Noise. AISTATS 2014: 805-813 - [c25]Yiye Zhang, Rema Padman, Larry A. Wasserman:
On Learning and Visualizing Practice-based Clinical Pathways for Chronic Kidney Disease. AMIA 2014 - [c24]Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry A. Wasserman:
Stochastic Convergence of Persistence Landscapes and Silhouettes. SoCG 2014: 474 - [c23]Akshay Krishnamurthy, Kirthevasan Kandasamy, Barnabás Póczos, Larry A. Wasserman:
Nonparametric Estimation of Renyi Divergence and Friends. ICML 2014: 919-927 - [i31]Yen-Chi Chen, Christopher R. Genovese, Larry A. Wasserman:
Generalized Mode and Ridge Estimation. CoRR abs/1406.1803 (2014) - [i30]Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Larry A. Wasserman:
Subsampling Methods for Persistent Homology. CoRR abs/1406.1901 (2014) - [i29]Sashank J. Reddi, Aaditya Ramdas, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
Kernel MMD, the Median Heuristic and Distance Correlation in High Dimensions. CoRR abs/1406.2083 (2014) - [i28]Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabás Póczos, Larry A. Wasserman, James M. Robins:
Influence Functions for Machine Learning: Nonparametric Estimators for Entropies, Divergences and Mutual Informations. CoRR abs/1411.4342 (2014) - [i27]Aaditya Ramdas, Sashank J. Reddi, Barnabás Póczos, Aarti Singh, Larry A. Wasserman:
On the High-dimensional Power of Linear-time Kernel Two-Sample Testing under Mean-difference Alternatives. CoRR abs/1411.6314 (2014) - [i26]Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Larry A. Wasserman:
Robust Topological Inference: Distance To a Measure and Kernel Distance. CoRR abs/1412.7197 (2014) - 2013
- [j14]Rob Hall, Alessandro Rinaldo, Larry A. Wasserman:
Differential privacy for functions and functional data. J. Mach. Learn. Res. 14(1): 703-727 (2013) - [j13]Robert J. Hall, Larry A. Wasserman, Alessandro Rinaldo:
Random Differential Privacy. J. Priv. Confidentiality 4(2) (2013) - [c22]Barnabás Póczos, Aarti Singh, Alessandro Rinaldo, Larry A. Wasserman:
Distribution-Free Distribution Regression. AISTATS 2013: 507-515 - [c21]Martin Azizyan, Aarti Singh, Larry A. Wasserman:
Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation. NIPS 2013: 2139-2147 - [c20]Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Cluster Trees on Manifolds. NIPS 2013: 2679-2687 - [i25]John D. Lafferty, Larry A. Wasserman:
Iterative Markov Chain Monte Carlo Computation of Reference Priors and Minimax Risk. CoRR abs/1301.2286 (2013) - [i24]Barnabás Póczos, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Distribution-Free Distribution Regression. CoRR abs/1302.0082 (2013) - [i23]Jing Lei, Alessandro Rinaldo, Larry A. Wasserman:
A Conformal Prediction Approach to Explore Functional Data. CoRR abs/1302.6452 (2013) - [i22]Sivaraman Balakrishnan, Brittany Fasy, Fabrizio Lecci, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Statistical Inference For Persistent Homology. CoRR abs/1303.7117 (2013) - [i21]Fabrizio Lecci, Alessandro Rinaldo, Larry A. Wasserman:
Statistical Analysis of Metric Graph Reconstruction. CoRR abs/1305.1212 (2013) - [i20]Martin Azizyan, Aarti Singh, Larry A. Wasserman:
Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation. CoRR abs/1306.2035 (2013) - [i19]Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Cluster Trees on Manifolds. CoRR abs/1307.6515 (2013) - [i18]Sivaraman Balakrishnan, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
Tight Lower Bounds for Homology Inference. CoRR abs/1307.7666 (2013) - [i17]Larry A. Wasserman, Mladen Kolar, Alessandro Rinaldo:
Estimating Undirected Graphs Under Weak Assumptions. CoRR abs/1309.6933 (2013) - [i16]Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Aarti Singh, Larry A. Wasserman:
On the Bootstrap for Persistence Diagrams and Landscapes. CoRR abs/1311.0376 (2013) - [i15]Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry A. Wasserman:
Stochastic Convergence of Persistence Landscapes and Silhouettes. CoRR abs/1312.0308 (2013) - [i14]Yen-Chi Chen, Christopher R. Genovese, Larry A. Wasserman:
Uncertainty Measures and Limiting Distributions for Filament Estimation. CoRR abs/1312.2098 (2013) - [i13]Christopher R. Genovese, Marco Perone-Pacifico, Isabella Verdinelli, Larry A. Wasserman:
Nonparametric Inference For Density Modes. CoRR abs/1312.7567 (2013) - 2012
- [j12]Alessandro Rinaldo, Aarti Singh, Rebecca Nugent, Larry A. Wasserman:
Stability of density-based clustering. J. Mach. Learn. Res. 13: 905-948 (2012) - [j11]Tuo Zhao, Han Liu, Kathryn Roeder, John D. Lafferty, Larry A. Wasserman:
The huge Package for High-dimensional Undirected Graph Estimation in R. J. Mach. Learn. Res. 13: 1059-1062 (2012) - [j10]Christopher R. Genovese, Marco Perone-Pacifico, Isabella Verdinelli, Larry A. Wasserman:
Minimax Manifold Estimation. J. Mach. Learn. Res. 13: 1263-1291 (2012) - [j9]Christopher R. Genovese, Jiashun Jin, Larry A. Wasserman, Zhigang Yao:
A Comparison of the Lasso and Marginal Regression. J. Mach. Learn. Res. 13: 2107-2143 (2012) - [j8]Larry A. Wasserman:
Minimaxity, Statistical Thinking and Differential Privacy. J. Priv. Confidentiality 4(1) (2012) - [c19]Han Liu, Fang Han, Ming Yuan, John D. Lafferty, Larry A. Wasserman:
High Dimensional Semiparametric Gaussian Copula Graphical Models. ICML 2012 - [c18]Han Liu, John D. Lafferty, Larry A. Wasserman:
Exponential Concentration for Mutual Information Estimation with Application to Forests. NIPS 2012: 2546-2554 - [c17]Sivaraman Balakrishnan, Alessandro Rinaldo, Don Sheehy, Aarti Singh, Larry A. Wasserman:
Minimax rates for homology inference. AISTATS 2012: 64-72 - [i12]John D. Lafferty, Han Liu, Larry A. Wasserman:
Sparse Nonparametric Graphical Models. CoRR abs/1201.0794 (2012) - [i11]Rob Hall, Alessandro Rinaldo, Larry A. Wasserman:
Differential Privacy for Functions and Functional Data. CoRR abs/1203.2570 (2012) - [i10]Jing Lei, Larry A. Wasserman:
Distribution Free Prediction Bands. CoRR abs/1203.5422 (2012) - [i9]Martin Azizyan, Aarti Singh, Larry A. Wasserman:
Density-Sensitive Semisupervised Inference. CoRR abs/1204.1685 (2012) - [i8]Han Liu, Fang Han, Ming Yuan, John D. Lafferty, Larry A. Wasserman:
The Nonparanormal SKEPTIC. CoRR abs/1206.6488 (2012) - [i7]Christopher R. Genovese, Marco Perone-Pacifico, Isabella Verdinelli, Larry A. Wasserman:
Nonparametric Ridge Estimation. CoRR abs/1212.5156 (2012) - 2011
- [j7]Han Liu, Min Xu, Haijie Gu, Anupam Gupta, John D. Lafferty, Larry A. Wasserman:
Forest Density Estimation. J. Mach. Learn. Res. 12: 907-951 (2011) - [j6]Mladen Kolar, John D. Lafferty, Larry A. Wasserman:
Union Support Recovery in Multi-task Learning. J. Mach. Learn. Res. 12: 2415-2435 (2011) - [i6]Christopher R. Genovese, Marco Perone-Pacifico, Isabella Verdinelli, Larry A. Wasserman:
Manifold Estimation and Singular Deconvolution Under Hausdorff Loss. CoRR abs/1109.4540 (2011) - [i5]Jing Lei, James M. Robins, Larry A. Wasserman:
Efficient Nonparametric Conformal Prediction Regions. CoRR abs/1111.1418 (2011) - [i4]Rob Hall, Alessandro Rinaldo, Larry A. Wasserman:
Random Differential Privacy. CoRR abs/1112.2680 (2011) - [i3]Sivaraman Balakrishnan, Alessandro Rinaldo, Don Sheehy, Aarti Singh, Larry A. Wasserman:
Minimax Rates for Homology Inference. CoRR abs/1112.5627 (2011) - 2010
- [j5]Shuheng Zhou, John D. Lafferty, Larry A. Wasserman:
Time varying undirected graphs. Mach. Learn. 80(2-3): 295-319 (2010) - [c16]Anupam Gupta, John D. Lafferty, Han Liu, Larry A. Wasserman, Min Xu:
Forest Density Estimation. COLT 2010: 394-406 - [c15]Han Liu, Xi Chen, John D. Lafferty, Larry A. Wasserman:
Graph-Valued Regression. NIPS 2010: 1423-1431 - [c14]Han Liu, Kathryn Roeder, Larry A. Wasserman:
Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. NIPS 2010: 1432-1440 - [i2]Christopher R. Genovese, Marco Perone-Pacifico, Isabella Verdinelli, Larry A. Wasserman:
Minimax Manifold Estimation. CoRR abs/1007.0549 (2010)
2000 – 2009
- 2009
- [j4]Han Liu, John D. Lafferty, Larry A. Wasserman:
The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. J. Mach. Learn. Res. 10: 2295-2328 (2009) - [j3]Shuheng Zhou, John D. Lafferty, Larry A. Wasserman:
Compressed and Privacy-Sensitive Sparse Regression. IEEE Trans. Inf. Theory 55(2): 846-866 (2009) - [c13]Shuheng Zhou, Katrina Ligett, Larry A. Wasserman:
Differential privacy with compression. ISIT 2009: 2718-2722 - [c12]Roger B. Dannenberg, Larry A. Wasserman:
Estimating the Error Distribution of a Single Tap Sequence without Ground Truth. ISMIR 2009: 297-302 - 2008
- [c11]Shuheng Zhou, John D. Lafferty, Larry A. Wasserman:
Time Varying Undirected Graphs. COLT 2008: 455-466 - [c10]Han Liu, John D. Lafferty, Larry A. Wasserman:
Nonparametric regression and classification with joint sparsity constraints. NIPS 2008: 969-976 - 2007
- [c9]John D. Lafferty, Larry A. Wasserman:
Statistical Analysis of Semi-Supervised Regression. NIPS 2007: 801-808 - [c8]Pradeep Ravikumar, Han Liu, John D. Lafferty, Larry A. Wasserman:
SpAM: Sparse Additive Models. NIPS 2007: 1201-1208 - [c7]Shuheng Zhou, John D. Lafferty, Larry A. Wasserman:
Compressed Regression. NIPS 2007: 1713-1720 - [c6]Han Liu, John D. Lafferty, Larry A. Wasserman:
Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo. AISTATS 2007: 283-290 - [i1]Shuheng Zhou, John D. Lafferty, Larry A. Wasserman:
Compressed Regression. CoRR abs/0706.0534 (2007) - 2005
- [c5]Brent Bryan, Jeff G. Schneider, Robert Nichol, Christopher J. Miller, Christopher R. Genovese, Larry A. Wasserman:
Active Learning For Identifying Function Threshold Boundaries. NIPS 2005: 163-170 - [c4]John D. Lafferty, Larry A. Wasserman:
Rodeo: Sparse Nonparametric Regression in High Dimensions. NIPS 2005: 707-714 - 2001
- [c3]John D. Lafferty, Larry A. Wasserman:
Iterative Markov Chain Monte Carlo Computation of Reference Priors and Minimax Risk. UAI 2001: 293-300
1990 – 1999
- 1999
- [j2]Sebastian Thrun, Christos Faloutsos, Tom M. Mitchell, Larry A. Wasserman:
Automated Learning and Discovery State-of-the-Art and Research Topics in a Rapidly Growing Field. AI Mag. 20(3): 78-82 (1999) - [c2]Larry A. Wasserman, Alan N. Willson Jr.:
A variable-rate filtering system for digital communications. ICASSP 1999: 1497-1500 - 1997
- [c1]James M. Robins, Larry A. Wasserman:
Estimation of Effects of Sequential Treatments by Reparameterizing Directed Acyclic Graphs. UAI 1997: 409-420 - 1992
- [j1]Larry A. Wasserman:
Comments on shafer's "perspectives on the theory and practice of belief functions". Int. J. Approx. Reason. 6(3): 367-375 (1992)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:18 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint