default search action
Wahid Bhimji
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i16]Shashank Subramanian, Ermal Rrapaj, Peter Harrington, Smeet Chheda, Steven Farrell, Brian Austin, Samuel Williams, Nicholas J. Wright, Wahid Bhimji:
Comprehensive Performance Modeling and System Design Insights for Foundation Models. CoRR abs/2410.00273 (2024) - [i15]Wahid Bhimji, Paolo Calafiura, Ragansu Chakkappai, Yuan-Tang Chou, Sascha Diefenbacher, Jordan Dudley, Steven Farrell, Aishik Ghosh, Isabelle Guyon, Chris Harris, Shih-Chieh Hsu, Elham E Khoda, Rémy Lyscar, Alexandre Michon, Benjamin Nachman, Peter Nugent, Mathis Reymond, David Rousseau, Benjamin Sluijter, Benjamin Thorne, Ihsan Ullah, Yulei Zhang:
FAIR Universe HiggsML Uncertainty Challenge Competition. CoRR abs/2410.02867 (2024) - 2023
- [j2]Wahid Bhimji, Dale Carder, Eli Dart, Javier M. Duarte, Ian Fisk, Robert W. Gardner, Chin Guok, Bo Jayatilaka, Tom Lehman, M. Lin, Carlos Maltzahn, Shawn McKee, Mark S. Neubauer, O. Rind, Oksana Shadura, N. V. Tran, P. van Gemmeren, Gordon Watts, B. A. Weaver, Frank Würthwein:
Snowmass 2021 Computational Frontier CompF4 Topical Group Report Storage and Processing Resource Access. Comput. Softw. Big Sci. 7(1): 5 (2023) - [c10]Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W. Mahoney, Amir Gholami:
Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior. NeurIPS 2023 - [c9]Nestor Demeure, Theodore Kisner, Reijo Keskitalo, Rollin C. Thomas, Julian Borrill, Wahid Bhimji:
High-level GPU code: a case study examining JAX and OpenMP. SC Workshops 2023: 1105-1113 - [i14]Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W. Mahoney, Amir Gholami:
Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior. CoRR abs/2306.00258 (2023) - 2022
- [i13]Ashesh Chattopadhyay, Jaideep Pathak, Ebrahim Nabizadeh, Wahid Bhimji, Pedram Hassanzadeh:
Long-term stability and generalization of observationally-constrained stochastic data-driven models for geophysical turbulence. CoRR abs/2205.04601 (2022) - 2021
- [c8]Khaled Z. Ibrahim, Tan Nguyen, Hai Ah Nam, Wahid Bhimji, Steven Farrell, Leonid Oliker, Michael Rowan, Nicholas J. Wright, Samuel Williams:
Architectural Requirements for Deep Learning Workloads in HPC Environments. PMBS 2021: 7-17 - [i12]Eli Dart, William E. Allcock, Wahid Bhimji, Tim Boerner, Ravinderjeet Cheema, Andrew Cherry, Brent Draney, Salman Habib, Damian Hazen, Jason Hill, Matt Kollross, Suzanne Parete-Koon, Daniel Pelfrey, Adrian Pope, Jeff Porter, David Wheeler:
The Petascale DTN Project: High Performance Data Transfer for HPC Facilities. CoRR abs/2105.12880 (2021) - 2020
- [j1]Frédéric Bapst, Wahid Bhimji, Paolo Calafiura, Heather M. Gray, Wim Lavrijsen, Lucy Linder, Alex Smith:
A Pattern Recognition Algorithm for Quantum Annealers. Comput. Softw. Big Sci. 4(1) (2020)
2010 – 2019
- 2019
- [c7]Atilim Gunes Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Saeid Naderiparizi, Andreas Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, Lawrence Meadows, Philip H. S. Torr, Victor W. Lee, Kyle Cranmer, Prabhat, Frank Wood:
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. NeurIPS 2019: 5460-5473 - [c6]Atilim Günes Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk, Saeid Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip H. S. Torr, Victor W. Lee, Kyle Cranmer, Prabhat, Frank Wood:
Etalumis: bringing probabilistic programming to scientific simulators at scale. SC 2019: 29:1-29:24 - [i11]Atilim Günes Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk, Saeid Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip H. S. Torr, Victor W. Lee, Kyle Cranmer, Prabhat, Frank Wood:
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale. CoRR abs/1907.03382 (2019) - 2018
- [c5]Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra Ronaghi, Prabhat, Wahid Bhimji, Michael M. Bronstein, Spencer R. Klein, Joan Bruna:
Graph Neural Networks for IceCube Signal Classification. ICMLA 2018: 386-391 - [c4]Steven Andrew Farrell, Aaron Vose, Oliver Evans, Matthew L. Henderson, Shreyas Cholia, Fernando Pérez, Wahid Bhimji, Shane Canon, Rollin C. Thomas, Prabhat:
Interactive Distributed Deep Learning with Jupyter Notebooks. ISC Workshops 2018: 678-687 - [i10]Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier M. Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir V. Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemyslaw Karpinski, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark S. Neubauer, Harvey B. Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel N. Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Andrew Stewart, Bob Stienen, Ian Stockdale, Giles Chatham Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata:
Machine Learning in High Energy Physics Community White Paper. CoRR abs/1807.02876 (2018) - [i9]Atilim Gunes Baydin, Lukas Heinrich, Wahid Bhimji, Bradley Gram-Hansen, Gilles Louppe, Lei Shao, Prabhat, Kyle Cranmer, Frank D. Wood:
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. CoRR abs/1807.07706 (2018) - [i8]Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra Ronaghi, Prabhat, Wahid Bhimji, Michael M. Bronstein, Spencer R. Klein, Joan Bruna:
Graph Neural Networks for IceCube Signal Classification. CoRR abs/1809.06166 (2018) - 2017
- [c3]Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis Mitliagkas, Md. Mostofa Ali Patwary, Tareq M. Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail Smorkalov, Jack Deslippe, Mikhail Shiryaev, Srinivas Sridharan, Prabhat, Pradeep Dubey:
Deep learning at 15PF: supervised and semi-supervised classification for scientific data. SC 2017: 7 - [i7]Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Rami Al-Rfou, Zarija Lukic:
Creating Virtual Universes Using Generative Adversarial Networks. CoRR abs/1706.02390 (2017) - [i6]Thorsten Kurth, Jian Zhang, Nadathur Satish, Ioannis Mitliagkas, Evan Racah, Md. Mostofa Ali Patwary, Tareq M. Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail Smorkalov, Jack Deslippe, Mikhail Shiryaev, Srinivas Sridharan, Prabhat, Pradeep Dubey:
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data. CoRR abs/1708.05256 (2017) - [i5]Wahid Bhimji, Steven Andrew Farrell, Thorsten Kurth, Michela Paganini, Prabhat, Evan Racah:
Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC. CoRR abs/1711.03573 (2017) - [i4]Mario Lezcano Casado, Atilim Gunes Baydin, David Martínez-Rubio, Tuan Anh Le, Frank D. Wood, Lukas Heinrich, Gilles Louppe, Kyle Cranmer, Karen Ng, Wahid Bhimji, Prabhat:
Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators. CoRR abs/1712.07901 (2017) - 2016
- [c2]Evan Racah, Seyoon Ko, Peter J. Sadowski, Wahid Bhimji, Craig Tull, Sang-Yun Oh, Pierre Baldi, Prabhat:
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks. ICMLA 2016: 892-897 - [c1]Md. Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram, Jialin Liu, Peter J. Sadowski, Evan Racah, Surendra Byna, Craig Tull, Wahid Bhimji, Prabhat, Pradeep Dubey:
PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures. IPDPS 2016: 494-503 - [i3]Evan Racah, Seyoon Ko, Peter J. Sadowski, Wahid Bhimji, Craig Tull, Sang-Yun Oh, Pierre Baldi, Prabhat:
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks. CoRR abs/1601.07621 (2016) - [i2]Md. Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram, Jialin Liu, Peter J. Sadowski, Evan Racah, Surendra Byna, Craig Tull, Wahid Bhimji, Prabhat, Pradeep Dubey:
PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures. CoRR abs/1607.08220 (2016) - 2011
- [i1]Samuel C. Skipsey, Wahid Bhimji, Mike Kenyon:
Establishing Applicability of SSDs to LHC Tier-2 Hardware Configuration. CoRR abs/1102.3114 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:15 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint