default search action
Julián Luengo
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j55]Diego García-Gil, David López, Daniel Argüelles-Martino, Jacinto Carrasco, Ignacio Aguilera-Martos, Julián Luengo, Francisco Herrera:
Developing Big Data anomaly dynamic and static detection algorithms: AnomalyDSD spark package. Inf. Sci. 690: 121587 (2025) - 2024
- [j54]Iago Xabier Vázquez, Bahgat Ayasi, Huseyin Seker, Julián Luengo, Javier Sedano, Ángel Miguel García-Vico:
Combining traditional and spiking neural networks for energy-efficient detection of Eimeria parasites. Appl. Soft Comput. 160: 111681 (2024) - [c32]Ignacio Aguilera-Martos, Andrés Herrera-Poyatos, Julián Luengo, Francisco Herrera:
Local Attention: Enhancing the Transformer Architecture for Efficient Time Series Forecasting. IJCNN 2024: 1-8 - [i11]Iván Sevillano-García, Julián Luengo, Francisco Herrera:
SHIELD: A regularization technique for eXplainable Artificial Intelligence. CoRR abs/2404.02611 (2024) - [i10]Ignacio Aguilera-Martos, Andrés Herrera-Poyatos, Julián Luengo, Francisco Herrera:
Local Attention Mechanism: Boosting the Transformer Architecture for Long-Sequence Time Series Forecasting. CoRR abs/2410.03805 (2024) - 2023
- [j53]Iván Sevillano-García, Julián Luengo, Francisco Herrera:
REVEL Framework to Measure Local Linear Explanations for Black-Box Models: Deep Learning Image Classification Case Study. Int. J. Intell. Syst. 2023: 1-34 (2023) - [j52]Ignacio Aguilera-Martos, Ángel Miguel García-Vico, Julián Luengo, Sergio Damas, Francisco J. Melero, José Javier Valle-Alonso, Francisco Herrera:
TSFEDL: A python library for time series spatio-temporal feature extraction and prediction using deep learning. Neurocomputing 517: 223-228 (2023) - [j51]Ignacio Aguilera-Martos, Marta García-Bárzana, Diego García-Gil, Jacinto Carrasco, David López, Julián Luengo, Francisco Herrera:
Multi-step histogram based outlier scores for unsupervised anomaly detection: ArcelorMittal engineering dataset case of study. Neurocomputing 544: 126228 (2023) - [j50]David López, Ignacio Aguilera-Martos, Marta García-Bárzana, Francisco Herrera, Diego García-Gil, Julián Luengo:
Fusing anomaly detection with false positive mitigation methodology for predictive maintenance under multivariate time series. Inf. Fusion 100: 101957 (2023) - [c31]Ignacio Aguilera-Martos, Julián Luengo, Francisco Herrera:
Revisiting Histogram Based Outlier Scores: Strengths and Weaknesses. HAIS 2023: 39-48 - [c30]Iván Sevillano-García, Julián Luengo, Francisco Herrera:
Optimizing LIME Explanations Using REVEL Metrics. HAIS 2023: 304-313 - [c29]Iván Sevillano-García, Julián Luengo, Francisco Herrera:
Low-Impact Feature Reduction Regularization Term: How to Improve Artificial Intelligence with Explainability. xAI (Late-breaking Work, Demos, Doctoral Consortium) 2023: 135-139 - [i9]Adrián Peláez-Vegas, Pablo Mesejo, Julián Luengo:
A Survey on Semi-Supervised Semantic Segmentation. CoRR abs/2302.09899 (2023) - 2022
- [j49]Miriam Seoane Santos, Pedro Henriques Abreu, Alberto Fernández, Julián Luengo, João A. M. Santos:
The impact of heterogeneous distance functions on missing data imputation and classification performance. Eng. Appl. Artif. Intell. 111: 104791 (2022) - [j48]Germán González-Almagro, Juan-Luis Suárez, Julián Luengo, José Ramón Cano, Salvador García:
3SHACC: Three stages hybrid agglomerative constrained clustering. Neurocomputing 490: 441-461 (2022) - [j47]Julián Luengo, Raúl Moreno, Iván Sevillano-García, David Charte, Adrián Peláez-Vegas, Marta Fernández-Moreno, Pablo Mesejo, Francisco Herrera:
A tutorial on the segmentation of metallographic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis and challenges. Inf. Fusion 78: 232-253 (2022) - [i8]Ignacio Aguilera-Martos, Ángel Miguel García-Vico, Julián Luengo, Sergio Damas, Francisco J. Melero, José Javier Valle-Alonso, Francisco Herrera:
TSFEDL: A Python Library for Time Series Spatio-Temporal Feature Extraction and Prediction using Deep Learning (with Appendices on Detailed Network Architectures and Experimental Cases of Study). CoRR abs/2206.03179 (2022) - [i7]Iván Sevillano-García, Julián Luengo-Martín, Francisco Herrera:
REVEL Framework to measure Local Linear Explanations for black-box models: Deep Learning Image Classification case of study. CoRR abs/2211.06154 (2022) - 2021
- [j46]Germán González-Almagro, Julián Luengo, José Ramón Cano, Salvador García:
Enhancing instance-level constrained clustering through differential evolution. Appl. Soft Comput. 108: 107435 (2021) - [j45]Jacinto Carrasco, David López, Ignacio Aguilera-Martos, Diego García-Gil, Irina Markova, Marta García-Bárzana, Manuel Arias-Rodil, Julián Luengo, Francisco Herrera:
Anomaly detection in predictive maintenance: A new evaluation framework for temporal unsupervised anomaly detection algorithms. Neurocomputing 462: 440-452 (2021) - [j44]Manuel González, Julián Luengo, José Ramón Cano, Salvador García:
Synthetic Sample Generation for Label Distribution Learning. Inf. Sci. 544: 197-213 (2021) - [j43]Julián Luengo, Dánel Sánchez Tarragó, Ronaldo C. Prati, Francisco Herrera:
Multiple instance classification: Bag noise filtering for negative instance noise cleaning. Inf. Sci. 579: 388-400 (2021) - [j42]Germán González-Almagro, Alejandro Rosales-Pérez, Julián Luengo, José Ramón Cano, Salvador García:
ME-MEOA/DCC: Multiobjective constrained clustering through decomposition-based memetic elitism. Swarm Evol. Comput. 66: 100939 (2021) - [i6]Jacinto Carrasco, Irina Markova, David López, Ignacio Aguilera, Diego García, Marta García-Bárzana, Manuel Arias-Rodil, Julián Luengo, Francisco Herrera:
Anomaly Detection in Predictive Maintenance: A New Evaluation Framework for Temporal Unsupervised Anomaly Detection Algorithms. CoRR abs/2105.12818 (2021) - [i5]Anabel Gómez-Ríos, Julián Luengo, Francisco Herrera:
A robust approach for deep neural networks in presence of label noise: relabelling and filtering instances during training. CoRR abs/2109.03748 (2021) - 2020
- [b2]Julián Luengo, Diego García-Gil, Sergio Ramírez-Gallego, Salvador García, Francisco Herrera:
Big Data Preprocessing - Enabling Smart Data. Springer 2020, ISBN 978-3-030-39104-1, pp. 1-186 - [j41]Germán González-Almagro, Julián Luengo, José Ramón Cano, Salvador García:
DILS: Constrained clustering through dual iterative local search. Comput. Oper. Res. 121: 104979 (2020) - [j40]Juan Antonio Cortés-Ibáñez, Sergio González, José Javier Valle-Alonso, Julián Luengo, Salvador García, Francisco Herrera:
Preprocessing methodology for time series: An industrial world application case study. Inf. Sci. 514: 385-401 (2020) - [j39]Jesús Maillo, Salvador García, Julián Luengo, Francisco Herrera, Isaac Triguero:
Fast and Scalable Approaches to Accelerate the Fuzzy k-Nearest Neighbors Classifier for Big Data. IEEE Trans. Fuzzy Syst. 28(5): 874-886 (2020) - [j38]Siham Tabik, Anabel Gómez-Ríos, J. L. Martín-Rodríguez, I. Sevillano-García, Manuel Rey-Area, David Charte, Emilio Guirado, Juan-Luis Suárez, Julián Luengo, M. A. Valero-González, P. García-Villanova, Eulalia Olmedo-Sánchez, Francisco Herrera:
COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images. IEEE J. Biomed. Health Informatics 24(12): 3595-3605 (2020) - [c28]Germán González-Almagro, Alejandro Rosales-Pérez, Julián Luengo, José Ramón Cano, Salvador García:
Improving constrained clustering via decomposition-based multiobjective optimization with memetic elitism. GECCO 2020: 333-341 - [c27]Germán González-Almagro, Juan-Luis Suárez, Julián Luengo, José Ramón Cano, Salvador García:
Agglomerative Constrained Clustering Through Similarity and Distance Recalculation. HAIS 2020: 424-436 - [c26]José Ramón Cano, Julián Luengo, Salvador García:
Similarity-based and Iterative Label Noise Filters for Monotonic Classification. HICSS 2020: 1-9 - [i4]Siham Tabik, Anabel Gómez-Ríos, J. L. Martín-Rodríguez, I. Sevillano-García, Manuel Rey-Area, David Charte, Emilio Guirado, Juan-Luis Suárez, Julián Luengo, M. A. Valero-González, P. García-Villanova, Eulalia Olmedo-Sánchez, Francisco Herrera:
COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images. CoRR abs/2006.01409 (2020)
2010 – 2019
- 2019
- [j37]Anabel Gómez-Ríos, Siham Tabik, Julián Luengo, A. S. M. Shihavuddin, Bartosz Krawczyk, Francisco Herrera:
Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation. Expert Syst. Appl. 118: 315-328 (2019) - [j36]Diego García-Gil, Francisco Luque Sánchez, Julián Luengo, Salvador García, Francisco Herrera:
From Big to Smart Data: Iterative ensemble filter for noise filtering in Big Data classification. Int. J. Intell. Syst. 34(12): 3260-3274 (2019) - [j35]José Ramón Cano, Julián Luengo, Salvador García:
Label noise filtering techniques to improve monotonic classification. Neurocomputing 353: 83-95 (2019) - [j34]Ignacio Cordón, Julián Luengo, Salvador García, Francisco Herrera, Francisco Charte:
Smartdata: Data preprocessing to achieve smart data in R. Neurocomputing 360: 1-13 (2019) - [j33]Diego García-Gil, Julián Luengo, Salvador García, Francisco Herrera:
Enabling Smart Data: Noise filtering in Big Data classification. Inf. Sci. 479: 135-152 (2019) - [j32]Ronaldo C. Prati, Julián Luengo, Francisco Herrera:
Emerging topics and challenges of learning from noisy data in nonstandard classification: a survey beyond binary class noise. Knowl. Inf. Syst. 60(1): 63-97 (2019) - [j31]Anabel Gómez-Ríos, Siham Tabik, Julián Luengo, A. S. M. Shihavuddin, Francisco Herrera:
Coral species identification with texture or structure images using a two-level classifier based on Convolutional Neural Networks. Knowl. Based Syst. 184 (2019) - [j30]Isaac Triguero, Diego García-Gil, Jesús Maillo, Julián Luengo, Salvador García, Francisco Herrera:
Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data. WIREs Data Mining Knowl. Discov. 9(2) (2019) - [c25]Besay Montesdeoca, Julián Luengo, Jesús Maillo, Diego García-Gil, Salvador García, Francisco Herrera:
A First Approach on Big Data Missing Values Imputation. IoTBDS 2019: 315-323 - [c24]Diego García-Gil, Alejandro Alcalde-Barros, Julián Luengo, Salvador García, Francisco Herrera:
Big Data Preprocessing as the Bridge between Big Data and Smart Data: BigDaPSpark and BigDaPFlink Libraries. IoTBDS 2019: 324-331 - 2018
- [j29]Julián Luengo, Seong-O Shim, Saleh Alshomrani, Abdulrahman H. Altalhi, Francisco Herrera:
CNC-NOS: Class noise cleaning by ensemble filtering and noise scoring. Knowl. Based Syst. 140: 27-49 (2018) - [c23]Jesús Maillo, Julián Luengo, Salvador García, Francisco Herrera, Isaac Triguero:
A preliminary study on Hybrid Spill-Tree Fuzzy k-Nearest Neighbors for big data classification. FUZZ-IEEE 2018: 1-8 - [c22]Julián Luengo, Dánel Sánchez Tarragó, Ronaldo C. Prati, Francisco Herrera:
A First Study on the Use of Noise Filtering to Clean the Bags in Multi-Instance Classification. LOPAL 2018: 3:1-3:6 - [i3]Anabel Gómez-Ríos, Siham Tabik, Julián Luengo, A. S. M. Shihavuddin, Bartosz Krawczyk, Francisco Herrera:
Towards Highly Accurate Coral Texture Images Classification Using Deep Convolutional Neural Networks and Data Augmentation. CoRR abs/1804.00516 (2018) - [i2]José Ramón Cano, Julián Luengo, Salvador García:
Label Noise Filtering Techniques to Improve Monotonic Classification. CoRR abs/1810.08914 (2018) - 2017
- [j28]Isaac Triguero, Sergio González, Jose M. Moyano, Salvador García, Jesús Alcalá-Fdez, Julián Luengo, Alberto Fernández, María José del Jesus, Luciano Sánchez, Francisco Herrera:
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining. Int. J. Comput. Intell. Syst. 10(1): 1238-1249 (2017) - [j27]Pablo Morales-Álvarez, Julián Luengo, Luís Paulo F. Garcia, Ana Carolina Lorena, André C. P. L. F. de Carvalho, Francisco Herrera:
The NoiseFiltersR Package: Label Noise Preprocessing in R. R J. 9(1): 219 (2017) - [c21]Jesús Maillo, Julián Luengo, Salvador García, Francisco Herrera, Isaac Triguero:
Exact fuzzy k-nearest neighbor classification for big datasets. FUZZ-IEEE 2017: 1-6 - [c20]Anabel Gómez-Ríos, Julián Luengo, Francisco Herrera:
A Study on the Noise Label Influence in Boosting Algorithms: AdaBoost, GBM and XGBoost. HAIS 2017: 268-280 - [i1]Diego García-Gil, Julián Luengo, Salvador García, Francisco Herrera:
Enabling Smart Data: Noise filtering in Big Data classification. CoRR abs/1704.01770 (2017) - 2016
- [j26]José A. Sáez, Julián Luengo, Francisco Herrera:
Evaluating the classifier behavior with noisy data considering performance and robustness: The Equalized Loss of Accuracy measure. Neurocomputing 176: 26-35 (2016) - [j25]José A. Sáez, Mikel Galar, Julián Luengo, Francisco Herrera:
INFFC: An iterative class noise filter based on the fusion of classifiers with noise sensitivity control. Inf. Fusion 27: 19-32 (2016) - [j24]Salvador García, Julián Luengo, Francisco Herrera:
Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowl. Based Syst. 98: 1-29 (2016) - [j23]Julián Luengo, Ángel Miguel García-Vico, M. Dolores Pérez-Godoy, Cristóbal J. Carmona:
The influence of noise on the evolutionary fuzzy systems for subgroup discovery. Soft Comput. 20(11): 4313-4330 (2016) - [c19]Pablo Morales-Alvarez, Julián Luengo, Francisco Herrera:
A First Study on the Use of Boosting for Class Noise Reparation. HAIS 2016: 549-559 - [c18]Isaac Triguero, Jesús Maillo, Julián Luengo, Salvador García, Francisco Herrera:
From Big Data to Smart Data with the K-Nearest Neighbours Algorithm. iThings/GreenCom/CPSCom/SmartData 2016: 859-864 - 2015
- [b1]Salvador García, Julián Luengo, Francisco Herrera:
Data Preprocessing in Data Mining. Intelligent Systems Reference Library 72, Springer 2015, ISBN 978-3-319-10246-7, pp. 1-313 - [j22]José A. Sáez, Julián Luengo, Jerzy Stefanowski, Francisco Herrera:
SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 291: 184-203 (2015) - [j21]Julián Luengo, Francisco Herrera:
An automatic extraction method of the domains of competence for learning classifiers using data complexity measures. Knowl. Inf. Syst. 42(1): 147-180 (2015) - [j20]Luís Paulo F. Garcia, José A. Sáez, Julián Luengo, Ana Carolina Lorena, André C. P. L. F. de Carvalho, Francisco Herrera:
Using the One-vs-One decomposition to improve the performance of class noise filters via an aggregation strategy in multi-class classification problems. Knowl. Based Syst. 90: 153-164 (2015) - [c17]Julián Luengo, Rafael Rumí:
Naive Bayes Classifier with Mixtures of Polynomials. ICPRAM (1) 2015: 14-24 - [c16]Cristóbal J. Carmona, Julián Luengo:
A First Approach in the Class Noise Filtering Approaches for Fuzzy Subgroup Discovery. SOCO 2015: 387-399 - 2014
- [j19]Isaac Triguero, José A. Sáez, Julián Luengo, Salvador García, Francisco Herrera:
On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification. Neurocomputing 132: 30-41 (2014) - [j18]José A. Sáez, Mikel Galar, Julián Luengo, Francisco Herrera:
Analyzing the presence of noise in multi-class problems: alleviating its influence with the One-vs-One decomposition. Knowl. Inf. Syst. 38(1): 179-206 (2014) - [j17]José A. Sáez, Joaquín Derrac, Julián Luengo, Francisco Herrera:
Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers. Pattern Recognit. 47(12): 3941-3948 (2014) - [c15]José A. Sáez, Joaquín Derrac, Julián Luengo, Francisco Herrera:
Improving the Behavior of the Nearest Neighbor Classifier against Noisy Data with Feature Weighting Schemes. HAIS 2014: 597-606 - [c14]José A. Sáez, Julián Luengo, Jerzy Stefanowski, Francisco Herrera:
Managing Borderline and Noisy Examples in Imbalanced Classification by Combining SMOTE with Ensemble Filtering. IDEAL 2014: 61-68 - 2013
- [j16]José A. Sáez, Mikel Galar, Julián Luengo, Francisco Herrera:
Tackling the problem of classification with noisy data using Multiple Classifier Systems: Analysis of the performance and robustness. Inf. Sci. 247: 1-20 (2013) - [j15]José A. Sáez, Julián Luengo, Francisco Herrera:
Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification. Pattern Recognit. 46(1): 355-364 (2013) - [j14]Salvador García, Julián Luengo, José Antonio Sáez, Victoria López, Francisco Herrera:
A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised Learning. IEEE Trans. Knowl. Data Eng. 25(4): 734-750 (2013) - [c13]José A. Sáez, Mikel Galar, Julián Luengo, Francisco Herrera:
An Experimental Case of Study on the Behavior of Multiple Classifier Systems with Class Noise Datasets. HAIS 2013: 568-577 - 2012
- [j13]Cristóbal J. Carmona, Julián Luengo, Pedro González, María José del Jesus:
An analysis on the use of pre-processing methods in evolutionary fuzzy systems for subgroup discovery. Expert Syst. Appl. 39(13): 11404-11412 (2012) - [j12]Julián Luengo, Francisco Herrera:
Shared domains of competence of approximate learning models using measures of separability of classes. Inf. Sci. 185(1): 43-65 (2012) - [j11]Julián Luengo, Salvador García, Francisco Herrera:
On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl. Inf. Syst. 32(1): 77-108 (2012) - [j10]Julián Luengo, José A. Sáez, Francisco Herrera:
Missing data imputation for fuzzy rule-based classification systems. Soft Comput. 16(5): 863-881 (2012) - [c12]Cristóbal J. Carmona, Julián Luengo, Pedro González, María José del Jesus:
A preliminary study on missing data imputation in evolutionary fuzzy systems of subgroup discovery. FUZZ-IEEE 2012: 1-7 - [c11]José A. Sáez, Mikel Galar, Julián Luengo, Francisco Herrera:
A First Study on Decomposition Strategies with Data with Class Noise Using Decision Trees. HAIS (2) 2012: 25-35 - [c10]Salvador García, Victoria López, Julián Luengo, Cristóbal J. Carmona, Francisco Herrera:
A Preliminary Study on Selecting the Optimal Cut Points in Discretization by Evolutionary Algorithms. ICPRAM (1) 2012: 211-216 - 2011
- [j9]Salvador García, Joaquín Derrac, Julián Luengo, Cristóbal J. Carmona, Francisco Herrera:
Evolutionary selection of hyperrectangles in nested generalized exemplar learning. Appl. Soft Comput. 11(3): 3032-3045 (2011) - [j8]Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquín Derrac, Salvador García:
KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework. J. Multiple Valued Log. Soft Comput. 17(2-3): 255-287 (2011) - [j7]Julián Luengo, Alberto Fernández, Salvador García, Francisco Herrera:
Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling. Soft Comput. 15(10): 1909-1936 (2011) - [c9]José A. Sáez, Julián Luengo, Francisco Herrera:
Fuzzy Rule Based Classification Systems versus crisp robust learners trained in presence of class noise's effects: A case of study. ISDA 2011: 1229-1234 - 2010
- [j6]Julián Luengo, Francisco Herrera:
Domains of competence of fuzzy rule based classification systems with data complexity measures: A case of study using a fuzzy hybrid genetic based machine learning method. Fuzzy Sets Syst. 161(1): 3-19 (2010) - [j5]Salvador García, Alberto Fernández, Julián Luengo, Francisco Herrera:
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 180(10): 2044-2064 (2010) - [j4]Julián Luengo, Salvador García, Francisco Herrera:
A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: The good synergy between RBFNs and EventCovering method. Neural Networks 23(3): 406-418 (2010) - [j3]Alberto Fernández, Salvador García, Julián Luengo, Ester Bernadó-Mansilla, Francisco Herrera:
Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy, and Comparative Study. IEEE Trans. Evol. Comput. 14(6): 913-941 (2010) - [c8]Julián Luengo, Francisco Herrera:
An extraction method for the characterization of the Fuzzy Rule Based Classification Systems' behavior using data complexity measures: A case of study with FH-GBML. FUZZ-IEEE 2010: 1-8 - [c7]José A. Sáez, Julián Luengo, Francisco Herrera:
A first study on the noise impact in classes for Fuzzy Rule Based Classification Systems. ISKE 2010: 153-158
2000 – 2009
- 2009
- [j2]Julián Luengo, Salvador García, Francisco Herrera:
A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests. Expert Syst. Appl. 36(4): 7798-7808 (2009) - [j1]Salvador García, Alberto Fernández, Julián Luengo, Francisco Herrera:
A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13(10): 959-977 (2009) - [c6]Julián Luengo, Francisco Herrera:
On the use of Measures of Separability of Classes to Characterise the Domains of Competence of a Fuzzy Rule Based Classification System. IFSA/EUSFLAT Conf. 2009: 1027-1032 - [c5]Alberto Fernández, Julián Luengo, Joaquín Derrac, Jesús Alcalá-Fdez, Francisco Herrera:
Implementation and Integration of Algorithms into the KEEL Data-Mining Software Tool. IDEAL 2009: 562-569 - [c4]Salvador García, Joaquín Derrac, Julián Luengo, Francisco Herrera:
A First Approach to Nearest Hyperrectangle Selection by Evolutionary Algorithms. ISDA 2009: 517-522 - [c3]Julián Luengo, Alberto Fernández, Salvador García, Francisco Herrera:
Addressing Data-Complexity for Imbalanced Data-Sets: A Preliminary Study on the Use of Preprocessing for C4.5. ISDA 2009: 523-528 - [c2]Julián Luengo, Francisco Herrera:
Domains of Competence of Artificial Neural Networks Using Measures of Separability of Classes. IWANN (1) 2009: 81-88 - 2007
- [c1]Julián Luengo, Salvador García, Francisco Herrera:
A Study on the Use of Statistical Tests for Experimentation with Neural Networks. IWANN 2007: 72-79
Coauthor Index
aka: José Antonio Sáez
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-23 19:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint