default search action
Michele Lombardi 0001
Person information
- affiliation: University of Bologna, Italy
Other persons with the same name
- Michele Lombardi 0002 — University of Liverpool, UK (and 5 more)
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j21]Mattia Silvestri, Allegra De Filippo, Michele Lombardi, Michela Milano:
UNIFY: A unified policy designing framework for solving integrated Constrained Optimization and Machine Learning problems. Knowl. Based Syst. 303: 112383 (2024) - [j20]Marco Skocaj, Lorenzo Mario Amorosa, Michele Lombardi, Roberto Verdone:
GUMBLE: Uncertainty-Aware Conditional Mobile Data Generation Using Bayesian Learning. IEEE Trans. Mob. Comput. 23(12): 13158-13171 (2024) - [c77]Luca Giuliani, Eleonora Misino, Roberta Calegari, Michele Lombardi:
Long-Term Fairness Strategies in Ranking with Continuous Sensitive Attributes. AEQUITAS@ECAI 2024 - [c76]Michele Braccini, Allegra De Filippo, Michele Lombardi, Michela Milano:
Swarm Intelligence: A Novel and Unconventional Approach to Dance Choreography Creation. CREAI@ECAI 2024: 162-172 - [c75]Eleonora Misino, Roberta Calegari, Michele Lombardi, Michela Milano:
Ensuring Fairness Stability for Disentangling Social Inequality in Access to Education: the FAiRDAS General Method. IJCAI 2024: 7412-7420 - [i20]Matteo Francobaldi, Michele Lombardi:
SMLE: Safe Machine Learning via Embedded Overapproximation. CoRR abs/2409.20517 (2024) - 2023
- [c74]Alessandro Maggio, Luca Giuliani, Roberta Calegari, Michele Lombardi, Michela Milano:
A geometric framework for fairness. AEQUITAS@ECAI 2023 - [c73]Eleonora Misino, Roberta Calegari, Michele Lombardi, Michela Milano:
FAiRDAS: Fairness-Aware Ranking as Dynamic Abstract System. AEQUITAS@ECAI 2023 - [c72]Mattia Silvestri, Federico Baldo, Eleonora Misino, Michele Lombardi:
An Analysis of Universal Differential Equations for Data-Driven Discovery of Ordinary Differential Equations. ICCS (4) 2023: 353-366 - [c71]Luca Giuliani, Eleonora Misino, Michele Lombardi:
Generalized Disparate Impact for Configurable Fairness Solutions in ML. ICML 2023: 11443-11458 - [c70]Samuele Marro, Michele Lombardi:
Computational Asymmetries in Robust Classification. ICML 2023: 24082-24138 - [i19]Luca Giuliani, Eleonora Misino, Michele Lombardi:
Generalized Disparate Impact for Configurable Fairness Solutions in ML. CoRR abs/2305.18504 (2023) - [i18]Mattia Silvestri, Federico Baldo, Eleonora Misino, Michele Lombardi:
An analysis of Universal Differential Equations for data-driven discovery of Ordinary Differential Equations. CoRR abs/2306.10335 (2023) - [i17]Samuele Marro, Michele Lombardi:
Computational Asymmetries in Robust Classification. CoRR abs/2306.14326 (2023) - [i16]Mattia Silvestri, Senne Berden, Jayanta Mandi, Ali Irfan Mahmutogullari, Maxime Mulamba, Allegra De Filippo, Tias Guns, Michele Lombardi:
Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning. CoRR abs/2307.05213 (2023) - [i15]Lorenzo Cellini, Antonio Macaluso, Michele Lombardi:
QAL-BP: An Augmented Lagrangian Quantum Approach for Bin Packing Problem. CoRR abs/2309.12678 (2023) - 2022
- [c69]Mattia Silvestri, Allegra De Filippo, Federico Ruggeri, Michele Lombardi:
Hybrid Offline/Online Optimization for Energy Management via Reinforcement Learning. CPAIOR 2022: 358-373 - [c68]Federico Baldo, Michele Iannello, Michele Lombardi, Michela Milano:
Informed Deep Learning for Epidemics Forecasting. PAIS@ECAI 2022: 86-99 - [c67]Mattia Silvestri, Michele Lombardi, Emiliano Mucchi, Luca Cadei, Giovanna Magnago, Marco Piantanida, Valentina D'Ottavio, Nguyen Van Tu, Simona Duma, Silvia Taddei, Annagiulia Tiozzo, Andrea Corneo, Lorenzo Lancia, Laura Rocchi, Pietro Coffari di Gilferraro:
Supervised Anomaly Detection in Crude Oil Stabilization. PAIS@ECAI 2022: 114-127 - [c66]Alessandro Seravalli, Mariaelena Busani, Simone Venturi, Arianna Brutti, Carlo Petrovich, Angelo Frascella, Fabrizio Paolucci, Marco Di Felice, Michele Lombardi, Elena Bellodi, Riccardo Zese, Francesco Bertasi, Elia Balugani, Alket Cecaj, Rita Gamberini, Marco Mamei, Marco Picone:
Towards Smart Cities for Tourism: the POLIS-EYE Project. ISC2 2022: 1-7 - [c65]António Morais, Raul Barbosa, Nuno Lourenço, Frederico Cerveira, Michele Lombardi, Henrique Madeira:
Strategies for Improving the Error Robustness of Convolutional Neural Networks. QRS 2022: 874-883 - [i14]Stefano Teso, Laurens Bliek, Andrea Borghesi, Michele Lombardi, Neil Yorke-Smith, Tias Guns, Andrea Passerini:
Machine Learning for Combinatorial Optimisation of Partially-Specified Problems: Regret Minimisation as a Unifying Lens. CoRR abs/2205.10157 (2022) - [i13]Mattia Silvestri, Allegra De Filippo, Michele Lombardi, Michela Milano:
UNIFY: a Unified Policy Designing Framework for Solving Constrained Optimization Problems with Machine Learning. CoRR abs/2210.14030 (2022) - [i12]Emma Frejinger, Andrea Lodi, Michele Lombardi, Neil Yorke-Smith:
Data-Driven Combinatorial Optimisation (Dagstuhl Seminar 22431). Dagstuhl Reports 12(10): 166-174 (2022) - 2021
- [j19]Yingqian Zhang, Michele Lombardi, Patrick De Causmaecker:
Preface. Ann. Math. Artif. Intell. 89(7): 615-616 (2021) - [j18]Allegra De Filippo, Michele Lombardi, Michela Milano:
Integrated Offline and Online Decision Making under Uncertainty. J. Artif. Intell. Res. 70: 77-117 (2021) - [c64]Fabrizio Detassis, Michele Lombardi, Michela Milano:
Teaching the Old Dog New Tricks: Supervised Learning with Constraints. AAAI 2021: 3742-3749 - [c63]Allegra De Filippo, Michele Lombardi, Michela Milano:
Robust Optimization Models For Local Flexibility Characterization of Virtual Power Plants. AI*IA 2021: 609-623 - [c62]Mattia Silvestri, Michele Lombardi, Michela Milano:
Injecting Domain Knowledge in Neural Networks: A Controlled Experiment on a Constrained Problem. CPAIOR 2021: 266-282 - [c61]Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns:
Contrastive Losses and Solution Caching for Predict-and-Optimize. IJCAI 2021: 2833-2840 - [i11]Federico Baldo, Lorenzo Dall'Olio, Mattia Ceccarelli, Riccardo Scheda, Michele Lombardi, Andrea Borghesi, Stefano Diciotti, Michela Milano:
Deep Learning for Virus-Spreading Forecasting: a Brief Survey. CoRR abs/2103.02346 (2021) - 2020
- [c60]Andrea Borghesi, Giuseppe Tagliavini, Michele Lombardi, Luca Benini, Michela Milano:
Combining learning and optimization for transprecision computing. CF 2020: 10-18 - [c59]Fabrizio Detassis, Michele Lombardi, Michela Milano:
Teaching the old dog new tricks: supervised learning with constraints. NeHuAI@ECAI 2020: 44-51 - [c58]Mattia Silvestri, Michele Lombardi, Michela Milano:
Injecting domain knowledge in neural networks: a controlled experiment on a constrained problem. NeHuAI@ECAI 2020: 52-58 - [c57]Allegra De Filippo, Michele Lombardi, Michela Milano:
Hybrid Offline/Online Optimization Under Uncertainty. ECAI 2020: 2899-2900 - [c56]Allegra De Filippo, Michele Lombardi, Michela Milano:
The Blind Men and the Elephant: Integrated Offline/Online Optimization Under Uncertainty. IJCAI 2020: 4840-4846 - [c55]Andrea Borghesi, Federico Baldo, Michele Lombardi, Michela Milano:
Injective Domain Knowledge in Neural Networks for Transprecision Computing. LOD (1) 2020: 587-600 - [c54]Ferdinando Fioretto, Pascal Van Hentenryck, Terrence W. K. Mak, Cuong Tran, Federico Baldo, Michele Lombardi:
Lagrangian Duality for Constrained Deep Learning. ECML/PKDD (5) 2020: 118-135 - [c53]Michele Lombardi, Federico Baldo, Andrea Borghesi, Michela Milano:
An Analysis of Regularized Approaches for Constrained Machine Learning. TAILOR 2020: 112-119 - [i10]Ferdinando Fioretto, Terrence W. K. Mak, Federico Baldo, Michele Lombardi, Pascal Van Hentenryck:
A Lagrangian Dual Framework for Deep Neural Networks with Constraints. CoRR abs/2001.09394 (2020) - [i9]Andrea Borghesi, Federico Baldo, Michele Lombardi, Michela Milano:
Injective Domain Knowledge in Neural Networks for Transprecision Computing. CoRR abs/2002.10214 (2020) - [i8]Mattia Silvestri, Michele Lombardi, Michela Milano:
Injecting Domain Knowledge in Neural Networks: a Controlled Experiment on a Constrained Problem. CoRR abs/2002.10742 (2020) - [i7]Fabrizio Detassis, Michele Lombardi, Michela Milano:
Teaching the Old Dog New Tricks: Supervised Learning with Constraints. CoRR abs/2002.10766 (2020) - [i6]Andrea Borghesi, Giuseppe Tagliavini, Michele Lombardi, Luca Benini, Michela Milano:
Combining Learning and Optimization for Transprecision Computing. CoRR abs/2002.10890 (2020) - [i5]Michele Lombardi, Federico Baldo, Andrea Borghesi, Michela Milano:
An Analysis of Regularized Approaches for Constrained Machine Learning. CoRR abs/2005.10674 (2020) - [i4]Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns:
Discrete solution pools and noise-contrastive estimation for predict-and-optimize. CoRR abs/2011.05354 (2020)
2010 – 2019
- 2019
- [j17]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems. Eng. Appl. Artif. Intell. 85: 634-644 (2019) - [c52]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Anomaly Detection Using Autoencoders in High Performance Computing Systems. AAAI 2019: 9428-9433 - [c51]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Anomaly Detection using Autoencoders in High Performance Computing Systems. DDC@AI*IA 2019: 24-32 - [c50]Allegra De Filippo, Michele Lombardi, Michela Milano:
How to Tame Your Anticipatory Algorithm. DDC@AI*IA 2019: 36-44 - [c49]Danuta Sorina Chisca, Michele Lombardi, Michela Milano, Barry O'Sullivan:
Logic-Based Benders Decomposition for Super Solutions: An Application to the Kidney Exchange Problem. CP 2019: 108-125 - [c48]Danuta Sorina Chisca, Michele Lombardi, Michela Milano, Barry O'Sullivan:
A Sampling-Free Anticipatory Algorithm for the Kidney Exchange Problem. CPAIOR 2019: 146-162 - [c47]Allegra De Filippo, Michele Lombardi, Michela Milano:
How to Tame Your Anticipatory Algorithm. IJCAI 2019: 1071-1077 - 2018
- [j16]Sascha Van Cauwelaert, Michele Lombardi, Pierre Schaus:
How efficient is a global constraint in practice? - A fair experimental framework. Constraints An Int. J. 23(1): 87-122 (2018) - [j15]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Scheduling-based power capping in high performance computing systems. Sustain. Comput. Informatics Syst. 19: 1-13 (2018) - [c46]Allegra De Filippo, Michele Lombardi, Michela Milano:
Off-Line and On-Line Optimization Under Uncertainty: A Case Study on Energy Management. CPAIOR 2018: 100-116 - [c45]Andrea Galassi, Michele Lombardi, Paola Mello, Michela Milano:
Model Agnostic Solution of CSPs via Deep Learning: A Preliminary Study. CPAIOR 2018: 254-262 - [c44]Danuta Sorina Chisca, Michele Lombardi, Michela Milano, Barry O'Sullivan:
From Offline to Online Kidney Exchange Optimization. ICTAI 2018: 587-591 - [c43]Allegra De Filippo, Michele Lombardi, Michela Milano:
Methods for off-line/on-line optimization under uncertainty. IJCAI 2018: 1270-1276 - [c42]Michele Lombardi, Michela Milano:
Boosting Combinatorial Problem Modeling with Machine Learning. IJCAI 2018: 5472-5478 - [i3]Michele Lombardi, Michela Milano:
Boosting Combinatorial Problem Modeling with Machine Learning. CoRR abs/1807.05517 (2018) - [i2]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Anomaly Detection using Autoencoders in High Performance Computing Systems. CoRR abs/1811.05269 (2018) - 2017
- [j14]Michele Lombardi, Michela Milano, Andrea Bartolini:
Empirical decision model learning. Artif. Intell. 244: 343-367 (2017) - [j13]Domenico Salvagnin, Michele Lombardi:
Introduction to the CPAIOR 2017 fast track issue. Constraints An Int. J. 22(4): 491-492 (2017) - [c41]Allegra De Filippo, Michele Lombardi, Michela Milano, Alberto Borghetti:
Robust Optimization for Virtual Power Plants. AI*IA 2017: 17-30 - [e2]Domenico Salvagnin, Michele Lombardi:
Integration of AI and OR Techniques in Constraint Programming - 14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings. Lecture Notes in Computer Science 10335, Springer 2017, ISBN 978-3-319-59775-1 [contents] - [i1]Sascha Van Cauwelaert, Michele Lombardi, Pierre Schaus:
A Visual Web Tool to Perform What-If Analysis of Optimization Approaches. CoRR abs/1703.06042 (2017) - 2016
- [j12]Michele Lombardi, Stefano Gualandi:
A lagrangian propagator for artificial neural networks in constraint programming. Constraints An Int. J. 21(4): 435-462 (2016) - [j11]Thomas Bridi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
A Constraint Programming Scheduler for Heterogeneous High-Performance Computing Machines. IEEE Trans. Parallel Distributed Syst. 27(10): 2781-2794 (2016) - [c40]Thomas Bridi, Michele Lombardi, Andrea Bartolini, Luca Benini, Michela Milano:
DARDIS: Distributed And Randomized DIspatching and Scheduling. AI*IA 2016: 493-507 - [c39]Alessio Bonfietti, Alessandro Zanarini, Michele Lombardi, Michela Milano:
The Multirate Resource Constraint. CP 2016: 113-129 - [c38]Allegra De Filippo, Michele Lombardi, Michela Milano:
Non-linear Optimization of Business Models in the Electricity Market. CPAIOR 2016: 81-97 - [c37]Thomas Bridi, Michele Lombardi, Andrea Bartolini, Luca Benini, Michela Milano:
DARDIS: Distributed And Randomized DIspatching and Scheduling. ECAI 2016: 1598-1599 - [c36]Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Predictive Modeling for Job Power Consumption in HPC Systems. ISC 2016: 181-199 - 2015
- [c35]Thomas Bridi, Michele Lombardi, Andrea Bartolini, Luca Benini, Michela Milano:
A CP Scheduler for High-Performance Computers. DC@AI*IA 2015: 37-42 - [c34]Michele Lombardi, Alessio Bonfietti, Michela Milano:
Deterministic Estimation of the Expected Makespan of a POS Under Duration Uncertainty. CP 2015: 279-294 - [c33]Andrea Borghesi, Francesca Collina, Michele Lombardi, Michela Milano, Luca Benini:
Power Capping in High Performance Computing Systems. CP 2015: 524-540 - [c32]Alessio Bonfietti, Michele Lombardi, Michela Milano:
Embedding Decision Trees and Random Forests in Constraint Programming. CPAIOR 2015: 74-90 - [c31]Sascha Van Cauwelaert, Michele Lombardi, Pierre Schaus:
Understanding the Potential of Propagators. CPAIOR 2015: 427-436 - [c30]Andrea Borghesi, Christian Conficoni, Michele Lombardi, Andrea Bartolini:
MS3: A Mediterranean-stile job scheduler for supercomputers - do less when it's too hot! HPCS 2015: 88-95 - 2014
- [j10]Alessio Bonfietti, Michele Lombardi, Luca Benini, Michela Milano:
CROSS cyclic resource-constrained scheduling solver. Artif. Intell. 206: 25-52 (2014) - [j9]Michela Milano, Michele Lombardi:
Strategic decision making on complex systems. Constraints An Int. J. 19(2): 174-185 (2014) - [c29]Andrea Bartolini, Andrea Borghesi, Thomas Bridi, Michele Lombardi, Michela Milano:
Proactive Workload Dispatching on the EURORA Supercomputer. CP 2014: 765-780 - [c28]Alessio Bonfietti, Michele Lombardi, Michela Milano:
Disregarding Duration Uncertainty in Partial Order Schedules? Yes, We Can! CPAIOR 2014: 210-225 - [c27]Michele Lombardi, Pierre Schaus:
Cost Impact Guided LNS. CPAIOR 2014: 293-300 - 2013
- [j8]Alessio Bonfietti, Michele Lombardi, Michela Milano, Luca Benini:
Maximum-throughput mapping of SDFGs on multi-core SoC platforms. J. Parallel Distributed Comput. 73(10): 1337-1350 (2013) - [j7]Michele Lombardi, Michela Milano, Luca Benini:
Robust Scheduling of Task Graphs under Execution Time Uncertainty. IEEE Trans. Computers 62(1): 98-111 (2013) - [c26]Alessio Bonfietti, Michele Lombardi, Michela Milano:
De-Cycling Cyclic Scheduling Problems. ICAPS 2013 - [c25]Michele Lombardi, Michela Milano:
A Min-Flow Algorithm for Minimal Critical Set Detection in Resource Constrained Project Scheduling. ICAPS 2013 - [c24]Stefano Gualandi, Michele Lombardi:
A Simple and Effective Decomposition for the Multidimensional Binpacking Constraint. CP 2013: 356-364 - [c23]Michele Lombardi, Stefano Gualandi:
A New Propagator for Two-Layer Neural Networks in Empirical Model Learning. CP 2013: 448-463 - 2012
- [j6]Michele Lombardi, Michela Milano:
A min-flow algorithm for Minimal Critical Set detection in Resource Constrained Project Scheduling. Artif. Intell. 182-183: 58-67 (2012) - [j5]Michele Lombardi, Michela Milano:
Optimal methods for resource allocation and scheduling: a cross-disciplinary survey. Constraints An Int. J. 17(1): 51-85 (2012) - [c22]Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Optimization and Controlled Systems: A Case Study on Thermal Aware Workload Dispatching. AAAI 2012: 427-433 - [c21]Alessio Bonfietti, Michele Lombardi:
The Weighted Average Constraint. CP 2012: 191-206 - [c20]Alessio Bonfietti, Michele Lombardi, Luca Benini, Michela Milano:
Global Cyclic Cumulative Constraint. CPAIOR 2012: 81-96 - [e1]Paolo Liberatore, Michele Lombardi, Floriano Scioscia:
Proceedings of the Doctoral Consortium of the 12th Symposium of the Italian Association for Artificial Intelligence, Rome, Italy, June 15, 2012. CEUR Workshop Proceedings 926, CEUR-WS.org 2012 [contents] - 2011
- [j4]Luca Benini, Michele Lombardi, Michela Milano, Martino Ruggiero:
Optimal resource allocation and scheduling for the CELL BE platform. Ann. Oper. Res. 184(1): 51-77 (2011) - [j3]Michele Lombardi, Michela Milano, Andrea Roli, Alessandro Zanarini:
Deriving Information from Sampling and Diving. Fundam. Informaticae 107(2-3): 267-287 (2011) - [c19]Alessio Franceschelli, Paolo Burgio, Giuseppe Tagliavini, Andrea Marongiu, Martino Ruggiero, Michele Lombardi, Alessio Bonfietti, Michela Milano, Luca Benini:
MPOpt-Cell: a high-performance data-flow programming environment for the CELL BE processor. Conf. Computing Frontiers 2011: 11 - [c18]Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini:
Neuron Constraints to Model Complex Real-World Problems. CP 2011: 115-129 - [c17]Alessio Bonfietti, Michele Lombardi, Luca Benini, Michela Milano:
A Constraint Based Approach to Cyclic RCPSP. CP 2011: 130-144 - [c16]Michele Lombardi, Alessio Bonfietti, Michela Milano, Luca Benini:
Precedence Constraint Posting for Cyclic Scheduling Problems. CPAIOR 2011: 137-153 - 2010
- [b1]Michele Lombardi:
Hybrid Methods for Resource Allocation and Scheduling Problems in Deterministic and Stochastic Environments. University of Bologna, Italy, 2010 - [j2]Michele Lombardi, Michela Milano:
Allocation and scheduling of Conditional Task Graphs. Artif. Intell. 174(7-8): 500-529 (2010) - [j1]Michele Lombardi, Michela Milano, Martino Ruggiero, Luca Benini:
Stochastic allocation and scheduling for conditional task graphs in multi-processor systems-on-chip. J. Sched. 13(4): 315-345 (2010) - [c15]Fabio Parisini, Michele Lombardi, Michela Milano:
Discrepancy-Based Sliced Neighborhood Search. AIMSA 2010: 91-100 - [c14]Michele Lombardi, Luca Benini, Abhishek Garg, Giovanni De Micheli:
Methods for Designing Reliable Probe Arrays. BIBE 2010: 306-307 - [c13]Michele Lombardi, Michela Milano:
Constraint Based Scheduling to Deal with Uncertain Durations and Self-Timed Execution. CP 2010: 383-397 - [c12]Alessio Bonfietti, Luca Benini, Michele Lombardi, Michela Milano:
An efficient and complete approach for throughput-maximal SDF allocation and scheduling on multi-core platforms. DATE 2010: 897-902
2000 – 2009
- 2009
- [c11]Michele Lombardi, Michela Milano, Andrea Roli, Alessandro Zanarini:
Deriving Information from Sampling and Diving. AI*IA 2009: 82-91 - [c10]Michele Lombardi, Michela Milano:
A Precedence Constraint Posting Approach for the RCPSP with Time Lags and Variable Durations. CP 2009: 569-583 - [c9]Alessio Bonfietti, Michele Lombardi, Michela Milano, Luca Benini:
Throughput Constraint for Synchronous Data Flow Graphs. CPAIOR 2009: 26-40 - [c8]Michele Lombardi, Michela Milano, Luca Benini:
Robust non-preemptive hard real-time scheduling for clustered multicore platforms. DATE 2009: 803-808 - 2008
- [c7]Luca Benini, Michele Lombardi, Michela Milano, Martino Ruggiero:
A Constraint Programming Approach for Allocation and Scheduling on the CELL Broadband Engine. CP 2008: 21-35 - [c6]Luca Benini, Michele Lombardi, Marco Mantovani, Michela Milano, Martino Ruggiero:
Multi-stage Benders Decomposition for Optimizing Multicore Architectures. CPAIOR 2008: 36-50 - [c5]Martino Ruggiero, Michele Lombardi, Michela Milano, Luca Benini:
Cellflow: A Parallel Application Development Environment with Run-Time Support for the Cell BE Processor. DSD 2008: 645-650 - 2007
- [c4]Willem Jan van Hoeve, Carla P. Gomes, Bart Selman, Michele Lombardi:
Optimal Multi-Agent Scheduling with Constraint Programming. AAAI 2007: 1813-1818 - [c3]Michele Lombardi, Michela Milano:
Scheduling Conditional Task Graphs. CP 2007: 468-482 - [c2]Emiliano Dolif, Michele Lombardi, Martino Ruggiero, Michela Milano, Luca Benini:
Communication-aware stochastic allocation and scheduling framework for conditional task graphs in multi-processor systems-on-chip. EMSOFT 2007: 47-56 - 2006
- [c1]Michele Lombardi, Michela Milano:
Stochastic Allocation and Scheduling for Conditional Task Graphs in MPSoCs. CP 2006: 299-313
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-16 22:06 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint