default search action
Leo G. Rebholz
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j51]Amanda E. Diegel, Xuejian Li, Leo G. Rebholz:
Analysis of continuous data assimilation with large (or even infinite) nudging parameters. J. Comput. Appl. Math. 456: 116221 (2025) - 2024
- [j50]Mine Akbas, Amanda E. Diegel, Leo G. Rebholz:
Continuous data assimilation of a discretized barotropic vorticity model of geophysical flow. Comput. Math. Appl. 160: 30-45 (2024) - [i20]Bosco García-Archilla, Xuejian Li, Julia Novo, Leo G. Rebholz:
Enhancing nonlinear solvers for the Navier-Stokes equations with continuous (noisy) data assimilation. CoRR abs/2401.06749 (2024) - [i19]Matt Dallas, Sara Pollock, Leo G. Rebholz:
Analysis of an Adaptive Safeguarded Newton-Anderson Algorithm with Applications to Fluid Problems. CoRR abs/2402.09295 (2024) - [i18]Sara Pollock, Leo G. Rebholz, Xuemin Tu, Mengying Xiao:
Analysis of the Picard-Newton iteration for the Navier-Stokes equations: global stability and quadratic convergence. CoRR abs/2402.12304 (2024) - [i17]Amanda E. Diegel, Xuejian Li, Leo G. Rebholz:
Analysis of continuous data assimilation with large (or even infinite) nudging parameters. CoRR abs/2408.00396 (2024) - 2023
- [j49]Leo G. Rebholz, Florentina Tone:
Long-time H1-stability of BDF2 time stepping for 2D Navier-Stokes equations. Appl. Math. Lett. 141: 108624 (2023) - [j48]Pelin G. Geredeli, Leo G. Rebholz, Duygu Vargun, Ahmed Zytoon:
Improved convergence of the Arrow-Hurwicz iteration for the Navier-Stokes equation via grad-div stabilization and Anderson acceleration. J. Comput. Appl. Math. 422: 114920 (2023) - [j47]Leo G. Rebholz, Mengying Xiao:
The Effect of Anderson Acceleration on Superlinear and Sublinear Convergence. J. Sci. Comput. 96(2): 34 (2023) - [j46]Sara N. Pollock, Leo G. Rebholz:
Filtering for Anderson Acceleration. SIAM J. Sci. Comput. 45(4) (2023) - [i16]Elizabeth Hawkins, Leo G. Rebholz, Duygu Vargun:
Removing splitting/modeling error in projection/penalty methods for Navier-Stokes simulations with continuous data assimilation. CoRR abs/2302.05962 (2023) - [i15]Maxim A. Olshanskii, Leo G. Rebholz:
Local conservation laws of continuous Galerkin method for the incompressible Navier-Stokes equations in EMAC form. CoRR abs/2309.05585 (2023) - 2022
- [j45]Amanda E. Diegel, Leo G. Rebholz:
Continuous data assimilation and long-time accuracy in a C0 interior penalty method for the Cahn-Hilliard equation. Appl. Math. Comput. 424: 127042 (2022) - [j44]Muhammad Mohebujjaman, Hongwei Wang, Leo G. Rebholz, Md. Abdullah Al Mahbub:
An efficient algorithm for parameterized magnetohydrodynamic flow ensembles simulation. Comput. Math. Appl. 112: 167-180 (2022) - [j43]Yi Zhang, Artur Palha, Marc Gerritsma, Leo G. Rebholz:
A mass-, kinetic energy- and helicity-conserving mimetic dual-field discretization for three-dimensional incompressible Navier-Stokes equations, part I: Periodic domains. J. Comput. Phys. 451: 110868 (2022) - [i14]Pelin G. Geredeli, Leo G. Rebholz, Duygu Vargun, Ahmed Zytoon:
Improved convergence of the Arrow-Hurwicz iteration for the Navier-Stokes equation via grad-div stabilization and Anderson acceleration. CoRR abs/2203.01534 (2022) - [i13]Sean Ingimarson, Monika Neda, Leo G. Rebholz, Jorge Reyes, An Vu:
Improved long time accuracy for projection methods for Navier-Stokes equations using EMAC formulation. CoRR abs/2205.05160 (2022) - [i12]Sara N. Pollock, Leo G. Rebholz:
Filtering for Anderson acceleration. CoRR abs/2211.12953 (2022) - 2021
- [j42]Mine Akbas, Leo G. Rebholz:
Modular grad-div stabilization for the incompressible non-isothermal fluid flows. Appl. Math. Comput. 393: 125748 (2021) - [j41]Sara N. Pollock, Leo G. Rebholz, Mengying Xiao:
Acceleration of nonlinear solvers for natural convection problems. J. Num. Math. 29(4): 323-341 (2021) - [i11]Yi Zhang, Artur Palha, Marc Gerritsma, Leo G. Rebholz:
A mass-, kinetic energy- and helicity-conserving mimetic dual-field discretization for three-dimensional incompressible Navier-Stokes equations, part I: Periodic domains. CoRR abs/2104.13023 (2021) - [i10]Leo G. Rebholz, Duygu Vargun, Mengying Xiao:
Enabling fast convergence of the iterated penalty Picard iteration with $O(1)$ penalty parameter for incompressible Navier-Stokes via Anderson acceleration. CoRR abs/2105.09339 (2021) - [i9]Amanda E. Diegel, Leo G. Rebholz:
Continuous data assimilation and long-time accuracy in a C0 interior penalty method for the Cahn-Hilliard equation. CoRR abs/2106.14744 (2021) - [i8]Muhammad Mohebujjaman, Hongwei Wang, Leo G. Rebholz, Md. Abdullah Al Mahbub:
An efficient algorithm for simulating ensembles of parameterized MHD flow problems. CoRR abs/2108.05110 (2021) - [i7]Sara N. Pollock, Leo G. Rebholz, Duygu Vargun:
An efficient nonlinear solver and convergence analysis for a viscoplastic flow model. CoRR abs/2108.08945 (2021) - [i6]Sean Ingimarson, Leo G. Rebholz, Traian Iliescu:
Full and Reduced Order Model Consistency of the Nonlinearity Discretization in Incompressible Flows. CoRR abs/2111.06749 (2021) - 2020
- [j40]Leo G. Rebholz, Alex Viguerie, Mengying Xiao:
Analysis of Algebraic Chorin Temam splitting for incompressible NSE and comparison to Yosida methods. J. Comput. Appl. Math. 365 (2020) - [j39]Claire Evans, Sara N. Pollock, Leo G. Rebholz, Mengying Xiao:
A Proof That Anderson Acceleration Improves the Convergence Rate in Linearly Converging Fixed-Point Methods (But Not in Those Converging Quadratically). SIAM J. Numer. Anal. 58(1): 788-810 (2020) - [i5]Mine Akbas, Leo G. Rebholz:
Modular grad-div stabilization for multiphysics flow problems. CoRR abs/2001.10100 (2020) - [i4]Maxim A. Olshanskii, Leo G. Rebholz:
Longer time accuracy for incompressible Navier-Stokes simulations with the EMAC formulation. CoRR abs/2002.01416 (2020) - [i3]Sara N. Pollock, Leo G. Rebholz, Mengying Xiao:
Acceleration of nonlinear solvers for natural convection problems. CoRR abs/2004.06471 (2020) - [i2]Matthew Gardner, Adam Larios, Leo G. Rebholz, Duygu Vargun, Camille Zerfas:
Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations. CoRR abs/2006.07295 (2020)
2010 – 2019
- 2019
- [j38]Alexander Linke, Leo G. Rebholz:
Pressure-induced locking in mixed methods for time-dependent (Navier-)Stokes equations. J. Comput. Phys. 388: 350-356 (2019) - [j37]Fatma G. Eroglu, Songul Kaya, Leo G. Rebholz:
POD-ROM for the Darcy-Brinkman equations with double-diffusive convection. J. Num. Math. 27(3): 123-139 (2019) - [j36]Leo G. Rebholz, Alex Viguerie, Mengying Xiao:
Efficient nonlinear iteration schemes based on algebraic splitting for the incompressible Navier-Stokes equations. Math. Comput. 88(318): 1533-1557 (2019) - [j35]Sara N. Pollock, Leo G. Rebholz, Mengying Xiao:
Anderson-Accelerated Convergence of Picard Iterations for Incompressible Navier-Stokes Equations. SIAM J. Numer. Anal. 57(2): 615-637 (2019) - [i1]Sara N. Pollock, Leo G. Rebholz:
Anderson acceleration for contractive and noncontractive operators. CoRR abs/1909.04638 (2019) - 2018
- [j34]Xuping Xie, Muhammad Mohebujjaman, Leo G. Rebholz, Traian Iliescu:
Data-Driven Filtered Reduced Order Modeling of Fluid Flows. SIAM J. Sci. Comput. 40(3) (2018) - 2017
- [j33]Muhammad Mohebujjaman, Leo G. Rebholz:
An Efficient Algorithm for Computation of MHD Flow Ensembles. Comput. Methods Appl. Math. 17(1): 121-137 (2017) - [j32]Mine Akbas, Muhammad Mohebujjaman, Leo G. Rebholz, Mengying Xiao:
High order algebraic splitting for magnetohydrodynamics simulation. J. Comput. Appl. Math. 321: 128-142 (2017) - [j31]Sergey Charnyi, Timo Heister, Maxim A. Olshanskii, Leo G. Rebholz:
On conservation laws of Navier-Stokes Galerkin discretizations. J. Comput. Phys. 337: 289-308 (2017) - [j30]Muhammad Mohebujjaman, Leo G. Rebholz, Xuping Xie, Traian Iliescu:
Energy balance and mass conservation in reduced order models of fluid flows. J. Comput. Phys. 346: 262-277 (2017) - [j29]Alexander Linke, Michael Neilan, Leo G. Rebholz, Nicholas E. Wilson:
A connection between coupled and penalty projection timestepping schemes with FE spatial discretization for the Navier-Stokes equations. J. Num. Math. 25(4): 229-248 (2017) - [j28]Timo Heister, Muhammad Mohebujjaman, Leo G. Rebholz:
Decoupled, Unconditionally Stable, Higher Order Discretizations for MHD Flow Simulation. J. Sci. Comput. 71(1): 21-43 (2017) - [j27]Timo Heister, Maxim A. Olshanskii, Leo G. Rebholz:
Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations. Numerische Mathematik 135(1): 143-167 (2017) - [j26]Volker John, Alexander Linke, Christian Merdon, Michael Neilan, Leo G. Rebholz:
On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows. SIAM Rev. 59(3): 492-544 (2017) - [j25]Leo G. Rebholz, Mengying Xiao:
Improved Accuracy in Algebraic Splitting Methods for Navier-Stokes Equations. SIAM J. Sci. Comput. 39(4) (2017) - 2016
- [j24]Yanzhao Cao, Song Chen, Leo G. Rebholz:
Well-posedness and a numerical study of a regularization model with adaptive nonlinear filtering for incompressible fluid flow. Comput. Math. Appl. 71(11): 2192-2205 (2016) - [j23]Monika Neda, Faranak Pahlevani, Leo G. Rebholz, Jiajia Waters:
Sensitivity analysis of the grad-div stabilization parameter in finite element simulations of incompressible flow. J. Num. Math. 24(3): 189-206 (2016) - 2015
- [j22]Mine Akbas Belenli, Leo G. Rebholz, Florentina Tone:
A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements. Appl. Math. Lett. 45: 98-102 (2015) - [j21]Mine Akbas Belenli, Songül Kaya, Leo G. Rebholz:
An Explicitly Decoupled Variational Multiscale Method for Incompressible, Non-Isothermal Flows. Comput. Methods Appl. Math. 15(1): 1-20 (2015) - [c1]Mine Akbas, Songul Kaya, Leo G. Rebholz:
Numerical Studies on a Second Order Explicitly Decoupled Variational Multiscale Method. ENUMATH 2015: 115-122 - 2014
- [j20]Eleanor W. Jenkins, Volker John, Alexander Linke, Leo G. Rebholz:
On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40(2): 491-516 (2014) - [j19]Songül Kaya, Carolina C. Manica, Leo G. Rebholz:
On Crank-Nicolson Adams-Bashforth timestepping for approximate deconvolution models in two dimensions. Appl. Math. Comput. 246: 23-38 (2014) - [j18]Keith J. Galvin, Leo G. Rebholz, Catalin Trenchea:
Efficient, Unconditionally Stable, and Optimally Accurate FE Algorithms for Approximate Deconvolution Models. SIAM J. Numer. Anal. 52(2): 678-707 (2014) - 2013
- [j17]Argus A. Dunca, Monika Neda, Leo G. Rebholz:
A mathematical and numerical study of a filtering-based multiscale fluid model with nonlinear eddy viscosity. Comput. Math. Appl. 66(6): 917-933 (2013) - [j16]Sabine Le Borne, Leo G. Rebholz:
Preconditioning sparse grad-div/augmented Lagrangian stabilized saddle point systems. Comput. Vis. Sci. 16(6): 259-269 (2013) - [j15]Mine Akbas Belenli, Songül Kaya, Leo G. Rebholz, Nicholas E. Wilson:
A subgrid stabilization finite element method for incompressible magnetohydrodynamics. Int. J. Comput. Math. 90(7): 1506-1523 (2013) - 2012
- [j14]Paul Kuberry, Adam Larios, Leo G. Rebholz, Nicholas E. Wilson:
Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows. Comput. Math. Appl. 64(8): 2647-2662 (2012) - [j13]Tae-Yeon Kim, Leo G. Rebholz, Eliot Fried:
A deconvolution enhancement of the Navier-Stokes-αβ model. J. Comput. Phys. 231(11): 4015-4027 (2012) - 2011
- [j12]Benjamin R. Cousins, Leo G. Rebholz, Nicholas E. Wilson:
Enforcing energy, helicity and strong mass conservation in finite element computations for incompressible Navier-Stokes simulations. Appl. Math. Comput. 218(4): 1208-1221 (2011) - [j11]Carolina C. Manica, Monika Neda, Maxim A. Olshanskii, Leo G. Rebholz, Nicholas E. Wilson:
On an Efficient Finite Element Method for Navier-Stokes-ω with Strong Mass Conservation. Comput. Methods Appl. Math. 11(1): 3-22 (2011) - [j10]Jeffrey M. Connors, Eleanor W. Jenkins, Leo G. Rebholz:
Small-scale divergence penalization for incompressible flow problems via time relaxation. Int. J. Comput. Math. 88(15): 3202-3216 (2011) - [j9]Hyesuk K. Lee, Maxim A. Olshanskii, Leo G. Rebholz:
On Error Analysis for the 3D Navier-Stokes Equations in Velocity-Vorticity-Helicity Form. SIAM J. Numer. Anal. 49(2): 711-732 (2011) - [j8]Michael A. Case, Vincent J. Ervin, Alexander Linke, Leo G. Rebholz:
A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations. SIAM J. Numer. Anal. 49(4): 1461-1481 (2011) - 2010
- [j7]William J. Layton, C. David Pruett, Leo G. Rebholz:
Temporally regularized direct numerical simulation. Appl. Math. Comput. 216(12): 3728-3738 (2010) - [j6]Maxim A. Olshanskii, Leo G. Rebholz:
Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes equations. J. Comput. Phys. 229(11): 4291-4303 (2010) - [j5]Abigail L. Bowers, Benjamin R. Cousins, Alexander Linke, Leo G. Rebholz:
New connections between finite element formulations of the Navier-Stokes equations. J. Comput. Phys. 229(24): 9020-9025 (2010)
2000 – 2009
- 2009
- [j4]Leo G. Rebholz:
Enhanced Physics-Based Numerical Schemes for Two Classes of Turbulence Models. Adv. Numer. Anal. 2009: 370289:1-370289:13 (2009) - [j3]William J. Layton, Carolina C. Manica, Monika Neda, Maxim A. Olshanskii, Leo G. Rebholz:
On the accuracy of the rotation form in simulations of the Navier-Stokes equations. J. Comput. Phys. 228(9): 3433-3447 (2009) - 2007
- [j2]Leo G. Rebholz:
An Energy- and Helicity-Conserving Finite Element Scheme for the Navier-Stokes Equations. SIAM J. Numer. Anal. 45(4): 1622-1638 (2007) - 2006
- [j1]Leo G. Rebholz:
A multiscale V-P discretization for flow problems. Appl. Math. Comput. 177(1): 24-35 (2006)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint