default search action
Huajun Zhang 0001
Person information
- affiliation: Delft University of Technology, Delft, The Netherlands
Other persons with the same name
- Huajun Zhang — disambiguation page
- Huajun Zhang 0002 — Wuhan University of Technology, School of Automation, Wuhan, China
- Huajun Zhang 0003 — Nanyang Technological University, Interdisciplinary Graduate School, Singapore, Singapore
- Huajun Zhang 0004 — South China Normal University, School of Information Technology in Education, Guangzhou, China
- Huajun Zhang 0005 — Shaoxing University, Department of Mathematics, Shaoxing, China
- Huajun Zhang 0006 — Chengdu University of Technology, Key Laboratory of Earth Exploration and Information Technology of Ministry of Education, Chengdu, China
- Huajun Zhang 0007 — Shanghai Jiao Tong University, Intelligentized Robotic Welding Technology Laboratory, Shanghai, China
- Huajun Zhang 0008 — Asia Pacific R&D Department, EDF LAB
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c11]Huajun Zhang, Mingshuang Zhang, Mengying Chen, Arthur Admiraal, Miao Zhang, Marco Berkhout, Qinwen Fan:
21.1 A 121.7dB DR and -109.0dB THD+N Filterless Digital-Input Class-D Amplifier with an HV Multibit IDAC Using Tri-level Output and Employing a Transition-Rate-Balanced Bidirectional RTDEM Scheme. ISSCC 2024: 378-380 - [c10]Huajun Zhang, Haochun Fan, Miao Zhang, Marco Berkhout, Qinwen Fan:
21.3 A -106.3dB THD+N Feedback-After-LC Class-D Audio Amplifier Employing Current Feedback to Enable 530kHz LC-Filter Cut-Off Frequency. ISSCC 2024: 382-384 - 2023
- [j9]Huajun Zhang, Marco Berkhout, Kofi A. A. Makinwa, Qinwen Fan:
A 120.9-dB DR Digital-Input Capacitively Coupled Chopper Class-D Audio Amplifier. IEEE J. Solid State Circuits 58(12): 3470-3480 (2023) - [c9]Huajun Zhang, Marco Berkhout, Kofi A. A. Makinwa, Qinwen Fan:
A 120.9dB DR, -111.2dB THD+N Digital-Input Capacitively-Coupled Chopper Class-D Audio Amplifier. ISSCC 2023: 54-55 - [c8]Shoubhik Karmakar, Huajun Zhang, Marco Berkhout, Qinwen Fan:
A Class-D Piezoelectric Speaker Driver Using A Quadrature Feedback Chopping Scheme achieving 29dB Large-Signal THD+N Improvement. VLSI Technology and Circuits 2023: 1-2 - 2022
- [j8]Menglian Zhao, Yibo Zhao, Huajun Zhang, Yaopeng Hu, Yuanxin Bao, Le Ye, Wanyuan Qu, Zhichao Tan:
A 4-μW Bandwidth/Power Scalable Delta-Sigma Modulator Based on Swing-Enhanced Floating Inverter Amplifiers. IEEE J. Solid State Circuits 57(3): 709-718 (2022) - [j7]Huajun Zhang, Marco Berkhout, Kofi A. A. Makinwa, Qinwen Fan:
A -121.5-dB THD Class-D Audio Amplifier With 49-dB LC Filter Nonlinearity Suppression. IEEE J. Solid State Circuits 57(4): 1153-1161 (2022) - [j6]Huajun Zhang, Nuriel N. M. Rozsa, Marco Berkhout, Qinwen Fan:
A Chopper Class-D Amplifier for PSRR Improvement Over the Entire Audio Band. IEEE J. Solid State Circuits 57(7): 2035-2044 (2022) - [j5]Huajun Zhang, Marco Berkhout, Kofi A. A. Makinwa, Qinwen Fan:
A 121.4-dB DR Capacitively Coupled Chopper Class-D Audio Amplifier. IEEE J. Solid State Circuits 57(12): 3736-3745 (2022) - [c7]Huajun Zhang, Marco Berkhout, Kofi A. A. Makinwa, Qinwen Fan:
A 121.4dB DR, -109.8dB THD+N Capacitively-Coupled Chopper Class-D Audio Amplifier. ISSCC 2022: 1-3 - 2021
- [j4]Huajun Zhang, Shoubhik Karmakar, Lucien J. Breems, Quino Sandifort, Marco Berkhout, Kofi A. A. Makinwa, Qinwen Fan:
A High-Linearity and Low-EMI Multilevel Class-D Amplifier. IEEE J. Solid State Circuits 56(4): 1176-1185 (2021) - [c6]Yibo Zhao, Huajun Zhang, Yaopeng Hu, Yuanxin Bao, Le Ye, Wanyuan Qu, Menglian Zhao, Zhichao Tan:
A 94.1 dB DR 4.1 nW/Hz Bandwidth/Power Scalable DTDSM for IoT Sensing Applications Based on Swing-Enhanced Floating Inverter Amplifiers. CICC 2021: 1-2 - [c5]Huajun Zhang, Nuriel Rozsa, Marco Berkhout, Qinwen Fan:
A -109.1 dB/-98 dB THD/THD+N Chopper Class-D Amplifier with >83.7 dB PSRR Over the Entire Audio Band. ESSCIRC 2021: 395-398 - [c4]Huajun Zhang, Marco Berkhout, Kofi A. A. Makinwa, Qinwen Fan:
A -121.5 dB THD Class-D Audio Amplifier with 49 dB Suppression of LC Filter Nonlinearity and Robust to +/-30% LC Filter Spread. VLSI Circuits 2021: 1-2 - 2020
- [j3]Shoubhik Karmakar, Huajun Zhang, Robert H. M. van Veldhoven, Lucien J. Breems, Marco Berkhout, Qinwen Fan, Kofi A. A. Makinwa:
A 28-W, -102.2-dB THD+N Class-D Amplifier Using a Hybrid ΔΣM-PWM Scheme. IEEE J. Solid State Circuits 55(12): 3146-3156 (2020) - [c3]Shoubhik Karmakar, Huajun Zhang, Robert H. M. van Veldhoven, Lucien J. Breems, Marco Berkhout, Qinwen Fan, Kofi A. A. Makinwa:
23.4 A 28W -108.9dB/-102.2dB THD/THD+N Hybrid ΔΣ-PWM Class-D Audio Amplifier with 91% Peak Efficiency and Reduced EMI Emission. ISSCC 2020: 350-352 - [c2]Huajun Zhang, Shoubhik Karmakar, Lucien J. Breems, Quino Sandifort, Marco Berkhout, Kofi A. A. Makinwa, Qinwen Fan:
A -107.8 dB THD+N Low-EMI Multi-Level Class-D Audio Amplifier. VLSI Circuits 2020: 1-2
2010 – 2019
- 2019
- [j2]Huajun Zhang, Zhichao Tan, Yi Zhang, Baozhen Chen, Roberto Maurino, Robert Adams, Khiem Nguyen:
A 6 $\mu$ W 95 dB SNDR Inverter Based $\Sigma\Delta$ Modulator With Subtractive Dithering and SAR Quantizer. IEEE Trans. Circuits Syst. II Express Briefs 66-II(4): 552-556 (2019) - [j1]Huajun Zhang, Zhichao Tan, Chao Chu, Baozhen Chen, Hongxing Li, Michael C. W. Coln, Khiem Nguyen:
A 1-V 560-nW SAR ADC With 90-dB SNDR for IoT Sensing Applications. IEEE Trans. Circuits Syst. II Express Briefs 66-II(12): 1967-1971 (2019) - 2016
- [c1]Huajun Zhang, David D. Wentzloff, Hun-Seok Kim:
Software-Defined, WiFi and BLE Compliant Back-Channel for Ultra-Low Power Wireless Communication. GLOBECOM 2016: 1-6
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-25 22:45 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint