default search action
Ulrich Paquet
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [i13]Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, Been Kim:
Bridging the Human-AI Knowledge Gap: Concept Discovery and Transfer in AlphaZero. CoRR abs/2310.16410 (2023) - 2022
- [j5]Nenad Tomasev, Ulrich Paquet, Demis Hassabis, Vladimir Kramnik:
Reimagining chess with AlphaZero. Commun. ACM 65(2): 60-66 (2022) - [c23]Elizabeth Bondi, Raphael Koster, Hannah Sheahan, Martin J. Chadwick, Yoram Bachrach, A. Taylan Cemgil, Ulrich Paquet, Krishnamurthy Dvijotham:
Role of Human-AI Interaction in Selective Prediction. AAAI 2022: 5286-5294 - 2021
- [i12]Thomas McGrath, Andrei Kapishnikov, Nenad Tomasev, Adam Pearce, Demis Hassabis, Been Kim, Ulrich Paquet, Vladimir Kramnik:
Acquisition of Chess Knowledge in AlphaZero. CoRR abs/2111.09259 (2021) - [i11]Elizabeth Bondi, Raphael Koster, Hannah Sheahan, Martin J. Chadwick, Yoram Bachrach, A. Taylan Cemgil, Ulrich Paquet, Krishnamurthy Dvijotham:
Role of Human-AI Interaction in Selective Prediction. CoRR abs/2112.06751 (2021) - 2020
- [i10]Nenad Tomasev, Ulrich Paquet, Demis Hassabis, Vladimir Kramnik:
Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets in Chess. CoRR abs/2009.04374 (2020)
2010 – 2019
- 2019
- [i9]Silvia Chiappa, Ulrich Paquet:
Unsupervised Separation of Dynamics from Pixels. CoRR abs/1907.12906 (2019) - 2018
- [c22]Rasmus Berg Palm, Ulrich Paquet, Ole Winther:
Recurrent Relational Networks. NeurIPS 2018: 3372-3382 - [i8]Ulrich Paquet, Marco Fraccaro:
An Efficient Implementation of Riemannian Manifold Hamiltonian Monte Carlo for Gaussian Process Models. CoRR abs/1810.11893 (2018) - [i7]Ulrich Paquet, Sumedh K. Ghaisas, Olivier Tieleman:
A Factorial Mixture Prior for Compositional Deep Generative Models. CoRR abs/1812.07480 (2018) - 2017
- [c21]Yoad Lewenberg, Yoram Bachrach, Ulrich Paquet, Jeffrey S. Rosenschein:
Knowing What to Ask: A Bayesian Active Learning Approach to the Surveying Problem. AAAI 2017: 1396-1402 - [c20]Mike Gartrell, Ulrich Paquet, Noam Koenigstein:
Low-Rank Factorization of Determinantal Point Processes. AAAI 2017: 1912-1918 - [c19]Marco Fraccaro, Simon Kamronn, Ulrich Paquet, Ole Winther:
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning. NIPS 2017: 3601-3610 - [c18]Shay Ben-Elazar, Gal Lavee, Noam Koenigstein, Oren Barkan, Hilik Berezin, Ulrich Paquet, Tal Zaccai:
Groove Radio: A Bayesian Hierarchical Model for Personalized Playlist Generation. WSDM 2017: 445-453 - [i6]Marco Fraccaro, Simon Kamronn, Ulrich Paquet, Ole Winther:
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning. CoRR abs/1710.05741 (2017) - [i5]Rasmus Berg Palm, Ulrich Paquet, Ole Winther:
Recurrent Relational Networks for Complex Relational Reasoning. CoRR abs/1711.08028 (2017) - 2016
- [c17]Weinan Zhang, Ulrich Paquet, Katja Hofmann:
Collective Noise Contrastive Estimation for Policy Transfer Learning. AAAI 2016: 1408-1414 - [c16]Marco Fraccaro, Ulrich Paquet, Ole Winther:
Indexable Probabilistic Matrix Factorization for Maximum Inner Product Search. AAAI 2016: 1554-1560 - [c15]Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, Ole Winther:
Sequential Neural Models with Stochastic Layers. NIPS 2016: 2199-2207 - [c14]Mike Gartrell, Ulrich Paquet, Noam Koenigstein:
Bayesian Low-Rank Determinantal Point Processes. RecSys 2016: 349-356 - [c13]Oren Sar Shalom, Noam Koenigstein, Ulrich Paquet, Hastagiri P. Vanchinathan:
Beyond Collaborative Filtering: The List Recommendation Problem. WWW 2016: 63-72 - [i4]Mike Gartrell, Ulrich Paquet, Noam Koenigstein:
Low-Rank Factorization of Determinantal Point Processes for Recommendation. CoRR abs/1602.05436 (2016) - [i3]Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, Ole Winther:
Sequential Neural Models with Stochastic Layers. CoRR abs/1605.07571 (2016) - [i2]Mike Gartrell, Ulrich Paquet, Noam Koenigstein:
The Bayesian Low-Rank Determinantal Point Process Mixture Model. CoRR abs/1608.04245 (2016) - 2014
- [c12]Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir Nice, Ulrich Paquet:
Speeding up the Xbox recommender system using a euclidean transformation for inner-product spaces. RecSys 2014: 257-264 - [c11]Allison June-Barlow Chaney, Mike Gartrell, Jake M. Hofman, John Guiver, Noam Koenigstein, Pushmeet Kohli, Ulrich Paquet:
A large-scale exploration of group viewing patterns. TVX 2014: 31-38 - 2013
- [j4]Manfred Opper, Ulrich Paquet, Ole Winther:
Perturbative corrections for approximate inference in Gaussian latent variable models. J. Mach. Learn. Res. 14(1): 2857-2898 (2013) - [c10]Noam Koenigstein, Ulrich Paquet:
Xbox movies recommendations: variational bayes matrix factorization with embedded feature selection. RecSys 2013: 129-136 - [c9]Ulrich Paquet, Noam Koenigstein:
One-class collaborative filtering with random graphs. WWW 2013: 999-1008 - [i1]Ulrich Paquet, Noam Koenigstein:
One-class Collaborative Filtering with Random Graphs: Annotated Version. CoRR abs/1309.6786 (2013) - 2012
- [j3]Ulrich Paquet, Blaise Thomson, Ole Winther:
A hierarchical model for ordinal matrix factorization. Stat. Comput. 22(4): 945-957 (2012) - [c8]Khalid El-Arini, Ulrich Paquet, Ralf Herbrich, Jurgen Van Gael, Blaise Agüera y Arcas:
Transparent user models for personalization. KDD 2012: 678-686 - [c7]Tim Salimans, Ulrich Paquet, Thore Graepel:
Collaborative learning of preference rankings. RecSys 2012: 261-264 - [c6]Noam Koenigstein, Nir Nice, Ulrich Paquet, Nir Schleyen:
The Xbox recommender system. RecSys 2012: 281-284
2000 – 2009
- 2009
- [j2]Ulrich Paquet, Ole Winther, Manfred Opper:
Perturbation Corrections in Approximate Inference: Mixture Modelling Applications. J. Mach. Learn. Res. 10: 1263-1304 (2009) - [c5]Ulrich Paquet:
Convexity and Bayesian constrained local models. CVPR 2009: 1193-1199 - 2008
- [c4]Manfred Opper, Ulrich Paquet, Ole Winther:
Improving on Expectation Propagation. NIPS 2008: 1241-1248 - 2007
- [b1]Ulrich Paquet:
Bayesian inference for latent variable models. University of Cambridge, UK, 2007 - [j1]Ulrich Paquet, Andries P. Engelbrecht:
Particle Swarms for Linearly Constrained Optimisation. Fundam. Informaticae 76(1-2): 147-170 (2007) - 2005
- [c3]Ulrich Paquet, Sean B. Holden, Andrew Naish-Guzman:
Bayesian Hierarchical Ordinal Regression. ICANN (2) 2005: 267-272 - [c2]Andrew Naish-Guzman, Sean B. Holden, Ulrich Paquet:
On the Explicit Use of Example Weights in the Construction of Classifiers. ICANN (2) 2005: 307-312 - 2003
- [c1]Ulrich Paquet, Andries P. Engelbrecht:
A new particle swarm optimiser for linearly constrained optimisation. IEEE Congress on Evolutionary Computation 2003: 227-233
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-05-08 20:59 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint