default search action
Tsung-Yung Jonathan Chang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j11]Hung-Hsi Hsu, Tai-Hao Wen, Wei-Hsing Huang, Win-San Khwa, Yun-Chen Lo, Chuan-Jia Jhang, Yu-Hsiang Chin, Yu-Chiao Chen, Chung-Chuan Lo, Ren-Shuo Liu, Kea-Tiong Tang, Chih-Cheng Hsieh, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A Nonvolatile AI-Edge Processor With SLC-MLC Hybrid ReRAM Compute-in-Memory Macro Using Current-Voltage-Hybrid Readout Scheme. IEEE J. Solid State Circuits 59(1): 116-127 (2024) - [j10]De-Qi You, Yen-Cheng Chiu, Win-San Khwa, Chung-Yuan Li, Fang-Ling Hsieh, Yu-An Chien, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
An 8b-Precision 8-Mb STT-MRAM Near-Memory-Compute Macro Using Weight-Feature and Input-Sparsity Aware Schemes for Energy-Efficient Edge AI Devices. IEEE J. Solid State Circuits 59(1): 219-230 (2024) - [j9]Yumito Aoyagi, Koji Nii, Makoto Yabuuchi, Tomotaka Tanaka, Yuichiro Ishii, Yoshiaki Osada, Takaaki Nakazato, Isabel Wang, Yu-Hao Hsu, Hong-Chen Cheng, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
A 3-nm FinFET 27.6-Mbit/mm2 Single-Port 6T SRAM Enabling 0.48-1.2 V Wide Operating Range With Far-End Pre-Charge and Weak-Bit Tracking. IEEE J. Solid State Circuits 59(4): 1225-1234 (2024) - [j8]Xiaoyu Sun, Weidong Cao, Brian Crafton, Kerem Akarvardar, Haruki Mori, Hidehiro Fujiwara, Hiroki Noguchi, Yu-Der Chih, Meng-Fan Chang, Yih Wang, Tsung-Yung Jonathan Chang:
Efficient Processing of MLPerf Mobile Workloads Using Digital Compute-In-Memory Macros. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 43(4): 1191-1205 (2024) - [c35]Masaru Haraguchi, Yorinobu Fujino, Yoshisato Yokoyama, Ming-Hung Chang, Yu-Hao Hsu, Hong-Chen Cheng, Koji Nii, Yih Wang, Tsung-Yung Jonathan Chang:
15.3 A 3nm FinFET 4.3GHz 21.1Mb/mm2 Double-Pumping 1-Read and 1-Write Pseudo-2-Port SRAM with Folded-Bitline Multi-Bank Architecture. ISSCC 2024: 280-282 - [c34]Yi-Cheng Huang, Shang-Hsuan Liu, Hsu-Shun Chen, Hsin-Chang Feng, Chih-Feng Li, Chou-Ying Yang, Wei-Keng Chang, Chang-Feng Yang, Chun-Yu Wu, Yen-Cheng Lin, Tsung-Tse Yang, Chih-Yang Chang, Wen-Ting Chu, Harry Chuang, Yih Wang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
15.7 A 32Mb RRAM in a 12nm FinFet Technology with a 0.0249μm2 Bit-Cell, a 3.2GB/S Read Throughput, a 10KCycle Write Endurance and a 10-Year Retention at 105°C. ISSCC 2024: 288-290 - [c33]Ku-Feng Lin, Hiroki Noguchi, Yi-Chun Shih, Perng-Fei Yuh, Yuan-Jen Lee, Tung-Cheng Chang, Sheng-Po Huang, Yu-Fan Lin, Chun-Ying Lee, Yen-Hsiang Huang, Jui-Che Tsai, Saman Adham, Peter Noel, Ramin Yazdi, Marat Gershoig, YangJae Shin, Vineet Joshi, Ted Wong, Meng-Ru Jiang, J. J. Wu, Chun-Tai Cheng, Yu-Jen Wang, Harry Chuang, Yu-Der Chih, Yih Wang, Tsung-Yung Jonathan Chang:
15.9 A 16nm 16Mb Embedded STT-MRAM with a 20ns Write Time, a 1012 Write Endurance and Integrated Margin-Expansion Schemes. ISSCC 2024: 292-294 - [c32]Hidehiro Fujiwara, Haruki Mori, Wei-Chang Zhao, Kinshuk Khare, Cheng-En Lee, Xiaochen Peng, Vineet Joshi, Chao-Kai Chuang, Shu-Huan Hsu, Takeshi Hashizume, Toshiaki Naganuma, Chen-Hung Tien, Yao-Yi Liu, Yen-Chien Lai, Chia-Fu Lee, Tan-Li Chou, Kerem Akarvardar, Saman Adham, Yih Wang, Yu-Der Chih, Yen-Huei Chen, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
34.4 A 3nm, 32.5TOPS/W, 55.0TOPS/mm2 and 3.78Mb/mm2 Fully-Digital Compute-in-Memory Macro Supporting INT12 × INT12 with a Parallel-MAC Architecture and Foundry 6T-SRAM Bit Cell. ISSCC 2024: 572-574 - [c31]Tai-Hao Wen, Hung-Hsi Hsu, Win-San Khwa, Wei-Hsing Huang, Zhao-En Ke, Yu-Hsiang Chin, Hua-Jin Wen, Yu-Chen Chang, Wei-Ting Hsu, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Shih-Hsih Teng, Chung-Cheng Chou, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
34.8 A 22nm 16Mb Floating-Point ReRAM Compute-in-Memory Macro with 31.2TFLOPS/W for AI Edge Devices. ISSCC 2024: 580-582 - [c30]Ming-Chieh Huang, Wei Wing Mar, Shankar Kanade, Boris Bai, Aditya Gayatri, Krishna Khairnar, Amy Lai, Yu-Hao Hsu, Hung-Jen Liao, Yih Wang, Tsung-Yung Jonathan Chang:
A 3.3GHz 1024X640 Multi-Bank Single-Port SRAM with Frequency Enhancing Techniques and 0.55V-1.35V Wide Voltage Range Operation in 3nm FinFET for HPC Applications. VLSI Technology and Circuits 2024: 1-2 - [c29]Tomotaka Tanaka, Yuichiro Ishii, Makoto Yabuuchi, Yumito Aoyagi, Masaya Hamada, Kazuto Mizutani, Koji Nii, Hidehiro Fujiwara, Isabel Wang, Hong-Chen Cheng, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
A 3nm Fin-FET 19.87-Mbit/mm2 2RW Pseudo Dual-Port 6T SRAM with High-R Wire Tracking and Sequential Access Aware Dynamic Power Reduction. VLSI Technology and Circuits 2024: 1-2 - [c28]De-Qi You, Win-San Khwa, Jui-Jen Wu, Chuan-Jia Jhang, Guan-Yi Lin, Po-Jung Chen, Ting-Chien Chiu, Fang-Yi Chen, Andrew Lee, Yu-Cheng Hung, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A 22nm Nonvolatile AI-Edge Processor with 21.4TFLOPS/W using 47.25Mb Lossless-Compressed-Computing STT-MRAM Near-Memory-Compute Macro. VLSI Technology and Circuits 2024: 1-2 - 2023
- [j7]Je-Min Hung, Tai-Hao Wen, Yen-Hsiang Huang, Sheng-Po Huang, Fu-Chun Chang, Chin-I Su, Win-San Khwa, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
8-b Precision 8-Mb ReRAM Compute-in-Memory Macro Using Direct-Current-Free Time-Domain Readout Scheme for AI Edge Devices. IEEE J. Solid State Circuits 58(1): 303-315 (2023) - [c27]Haruki Mori, Wei-Chang Zhao, Cheng-En Lee, Chia-Fu Lee, Yu-Hao Hsu, Chao-Kai Chuang, Takeshi Hashizume, Hao-Chun Tung, Yao-Yi Liu, Shin-Rung Wu, Kerem Akarvardar, Tan-Li Chou, Hidehiro Fujiwara, Yih Wang, Yu-Der Chih, Yen-Huei Chen, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
A 4nm 6163-TOPS/W/b $\mathbf{4790-TOPS/mm^{2}/b}$ SRAM Based Digital-Computing-in-Memory Macro Supporting Bit-Width Flexibility and Simultaneous MAC and Weight Update. ISSCC 2023: 132-133 - [c26]Wei-Hsing Huang, Tai-Hao Wen, Je-Min Hung, Win-San Khwa, Yun-Chen Lo, Chuan-Jia Jhang, Hung-Hsi Hsu, Yu-Hsiang Chin, Yu-Chiao Chen, Chuna-Chuan Lo, Ren-Shuo Liu, Kea-Tiong Tang, Chih-Cheng Hsieh, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A Nonvolatile Al-Edge Processor with 4MB SLC-MLC Hybrid-Mode ReRAM Compute-in-Memory Macro and 51.4-251TOPS/W. ISSCC 2023: 258-259 - [c25]Po-Hao Lee, Chia-Fu Lee, Yi-Chun Shih, Hon-Jarn Lin, Yen-An Chang, Cheng-Han Lu, Yu-Lin Chen, Chieh-Pu Lo, Chung-Chieh Chen, Cheng-Hsiung Kuo, Tan-Li Chou, Chia-Yu Wang, J. J. Wu, Roger Wang, Harry Chuang, Yih Wang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
A 16nm 32Mb Embedded STT-MRAM with a 6ns Read-Access Time, a 1M-Cycle Write Endurance, 20-Year Retention at 150°C and MTJ-OTP Solutions for Magnetic Immunity. ISSCC 2023: 494-495 - [c24]Yen-Cheng Chiu, Win-San Khwa, Chung-Yuan Li, Fang-Ling Hsieh, Yu-An Chien, Guan-Yi Lin, Po-Jung Chen, Tsen-Hsiang Pan, De-Qi You, Fang-Yi Chen, Andrew Lee, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A 22nm 8Mb STT-MRAM Near-Memory-Computing Macro with 8b-Precision and 46.4-160.1TOPS/W for Edge-AI Devices. ISSCC 2023: 496-497 - [c23]Yumito Aoyagi, Makoto Yabuuchi, Tomotaka Tanaka, Yuichiro Ishii, Yoshiaki Osada, Takaaki Nakazato, Koji Nii, Isabel Wang, Yu-Hao Hsu, Hong-Chen Cheng, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
A 3-nm 27.6-Mbit/mm2 Self-timed SRAM Enabling 0.48 - 1.2 V Wide Operating Range with Far-end Pre-charge and Weak-Bit Tracking. VLSI Technology and Circuits 2023: 1-2 - [c22]Yoshiaki Osada, Takaaki Nakazato, Koji Nii, Jhon-Jhy Liaw, Shien-Yang Michael Wu, Quincy Li, Hidehiro Fujiwara, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
3.7-GHz Multi-Bank High-Current Single-Port Cache SRAM with 0.5V-1.4V Wide Voltage Range Operation in 3nm FinFET for HPC Applications. VLSI Technology and Circuits 2023: 1-2 - [c21]Tai-Hao Wen, Je-Min Hung, Hung-Hsi Hsu, Yuan Wu, Fu-Chun Chang, Chung-Yuan Li, Chih-Han Chien, Chin-I Su, Win-San Khwa, Jui-Jen Wu, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Mon-Shu Ho, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A 28nm Nonvolatile AI Edge Processor using 4Mb Analog-Based Near-Memory-Compute ReRAM with 27.2 TOPS/W for Tiny AI Edge Devices. VLSI Technology and Circuits 2023: 1-2 - [c20]Wei-Xiang You, Cheng-Yin Wang, Yih Wang, Tsung-Yung Jonathan Chang, Szuya Sandy Liao:
Write-enhanced Single-ended 11T SRAM Enabling Single Bitcell Reconfigurable Compute-in-Memory Employing Complementary FETs. VLSI Technology and Circuits 2023: 1-2 - [c19]Nick Zhang, Young Suk Kim, Peter Hsu, Samsoo Kim, Derek Tao, Hung-Jen Liao, Ping-Wei Wang, Geoffrey Yeap, Quincy Li, Tsung-Yung Jonathan Chang:
A 4.24GHz 128X256 SRAM Operating Double Pump Read Write Same Cycle in 5nm Technology. VLSI Technology and Circuits 2023: 1-2 - 2022
- [j6]Yen-Cheng Chiu, Tung-Cheng Chang, Chun-Ying Lee, Je-Min Hung, Kuang-Tang Chang, Cheng-Xin Xue, Ssu-Yen Wu, Hui-Yao Kao, Peng Chen, Hsiao-Yu Huang, Shih-Hsih Teng, Chieh-Pu Lo, Yi-Chun Shih, Yu-Der Chih, Tsung-Yung Jonathan Chang, Yier Jin, Meng-Fan Chang:
A 22-nm 1-Mb 1024-b Read Data-Protected STT-MRAM Macro With Near-Memory Shift-and-Rotate Functionality and 42.6-GB/s Read Bandwidth for Security-Aware Mobile Device. IEEE J. Solid State Circuits 57(6): 1936-1949 (2022) - [c18]Hidehiro Fujiwara, Haruki Mori, Wei-Chang Zhao, Mei-Chen Chuang, Rawan Naous, Chao-Kai Chuang, Takeshi Hashizume, Dar Sun, Chia-Fu Lee, Kerem Akarvardar, Saman Adham, Tan-Li Chou, Mahmut Ersin Sinangil, Yih Wang, Yu-Der Chih, Yen-Huei Chen, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
A 5-nm 254-TOPS/W 221-TOPS/mm2 Fully-Digital Computing-in-Memory Macro Supporting Wide-Range Dynamic-Voltage-Frequency Scaling and Simultaneous MAC and Write Operations. ISSCC 2022: 1-3 - [c17]Je-Min Hung, Yen-Hsiang Huang, Sheng-Po Huang, Fu-Chun Chang, Tai-Hao Wen, Chin-I Su, Win-San Khwa, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
An 8-Mb DC-Current-Free Binary-to-8b Precision ReRAM Nonvolatile Computing-in-Memory Macro using Time-Space-Readout with 1286.4-21.6TOPS/W for Edge-AI Devices. ISSCC 2022: 1-3 - [c16]Yen-Cheng Chiu, Chia-Sheng Yang, Shih-Hsih Teng, Hsiao-Yu Huang, Fu-Chun Chang, Yuan Wu, Yu-An Chien, Fang-Ling Hsieh, Chung-Yuan Li, Guan-Yi Lin, Po-Jung Chen, Tsen-Hsiang Pan, Chung-Chuan Lo, Win-San Khwa, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Chieh-Pu Lo, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A 22nm 4Mb STT-MRAM Data-Encrypted Near-Memory Computation Macro with a 192GB/s Read-and-Decryption Bandwidth and 25.1-55.1TOPS/W 8b MAC for AI Operations. ISSCC 2022: 178-180 - [c15]Chia-Fu Lee, Cheng-Han Lu, Cheng-En Lee, Haruki Mori, Hidehiro Fujiwara, Yi-Chun Shih, Tan-Li Chou, Yu-Der Chih, Tsung-Yung Jonathan Chang:
A 12nm 121-TOPS/W 41.6-TOPS/mm2 All Digital Full Precision SRAM-based Compute-in-Memory with Configurable Bit-width For AI Edge Applications. VLSI Technology and Circuits 2022: 24-25 - 2021
- [j5]Tsung-Yung Jonathan Chang, Yen-Huei Chen, Wei-Min Chan, Hank Cheng, Po-Sheng Wang, Yangsyu Lin, Hidehiro Fujiwara, Robin Lee, Hung-Jen Liao, Ping-Wei Wang, Geoffrey Yeap, Quincy Li:
A 5-nm 135-Mb SRAM in EUV and High-Mobility Channel FinFET Technology With Metal Coupling and Charge-Sharing Write-Assist Circuitry Schemes for High-Density and Low-VMIN Applications. IEEE J. Solid State Circuits 56(1): 179-187 (2021) - [j4]Ziyun Li, Zhehong Wang, Li Xu, Qing Dong, Bowen Liu, Chin-I Su, Wen-Ting Chu, George Tsou, Yu-Der Chih, Tsung-Yung Jonathan Chang, Dennis Sylvester, Hun-Seok Kim, David T. Blaauw:
RRAM-DNN: An RRAM and Model-Compression Empowered All-Weights-On-Chip DNN Accelerator. IEEE J. Solid State Circuits 56(4): 1105-1115 (2021) - [c14]Cheng-Xin Xue, Je-Min Hung, Hui-Yao Kao, Yen-Hsiang Huang, Sheng-Po Huang, Fu-Chun Chang, Peng Chen, Ta-Wei Liu, Chuan-Jia Jhang, Chin-I Su, Win-San Khwa, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang:
A 22nm 4Mb 8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7TOPS/W for Tiny AI Edge Devices. ISSCC 2021: 245-247 - [c13]Yu-Der Chih, Po-Hao Lee, Hidehiro Fujiwara, Yi-Chun Shih, Chia-Fu Lee, Rawan Naous, Yu-Lin Chen, Chieh-Pu Lo, Cheng-Han Lu, Haruki Mori, Wei-Cheng Zhao, Dar Sun, Mahmut E. Sinangil, Yen-Huei Chen, Tan-Li Chou, Kerem Akarvardar, Hung-Jen Liao, Yih Wang, Meng-Fan Chang, Tsung-Yung Jonathan Chang:
An 89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications. ISSCC 2021: 252-254 - 2020
- [c12]Yu-Der Chih, Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee, Hon-Jarn Lin, Yu-Lin Chen, Chieh-Pu Lo, Meng-Chun Shih, Kuei-Hung Shen, Harry Chuang, Tsung-Yung Jonathan Chang:
13.3 A 22nm 32Mb Embedded STT-MRAM with 10ns Read Speed, 1M Cycle Write Endurance, 10 Years Retention at 150°C and High Immunity to Magnetic Field Interference. ISSCC 2020: 222-224 - [c11]Chung-Cheng Chou, Zheng-Jun Lin, Chien-An Lai, Chin-I Su, Pei-Ling Tseng, Wei-Chi Chen, Wu-Chin Tsai, Wen-Ting Chu, Tong-Chern Ong, Harry Chuang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
A 22nm 96KX144 RRAM Macro with a Self-Tracking Reference and a Low Ripple Charge Pump to Achieve a Configurable Read Window and a Wide Operating Voltage Range. VLSI Circuits 2020: 1-2 - [c10]Zhehong Wang, Ziyun Li, Li Xu, Qing Dong, Chin-I Su, Wen-Ting Chu, George Tsou, Yu-Der Chih, Tsung-Yung Jonathan Chang, Dennis Sylvester, Hun-Seok Kim, David T. Blaauw:
An All-Weights-on-Chip DNN Accelerator in 22nm ULL Featuring 24×1 Mb eRRAM. VLSI Circuits 2020: 1-2
2010 – 2019
- 2019
- [j3]Qing Dong, Zhehong Wang, Jongyup Lim, Yiqun Zhang, Mahmut E. Sinangil, Yi-Chun Shih, Yu-Der Chih, Tsung-Yung Jonathan Chang, David T. Blaauw, Dennis Sylvester:
A 1-Mb 28-nm 1T1MTJ STT-MRAM With Single-Cap Offset-Cancelled Sense Amplifier and In Situ Self-Write-Termination. IEEE J. Solid State Circuits 54(1): 231-239 (2019) - [j2]Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee, Hon-Jarn Lin, Yu-Lin Chen, Ku-Feng Lin, Ta-Ching Yeh, Hung-Chang Yu, Harry Chuang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
Logic Process Compatible 40-nm 16-Mb, Embedded Perpendicular-MRAM With Hybrid-Resistance Reference, Sub- $\mu$ A Sensing Resolution, and 17.5-nS Read Access Time. IEEE J. Solid State Circuits 54(4): 1029-1038 (2019) - 2018
- [c9]Chien-An Lai, Chung-Cheng Chou, Chi-Hsiang Weng, Zheng-Jun Lin, Pei-Ling Tseng, Chien-Fan Wang, Chih-Chen Wang, Chin-I Su, Wei-Chi Chen, Yu-Cheng Lin, Tong-Chern Ong, Chi Chang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
Logic Process Compatible 40nm 256K×144 Embedded RRAM with Low Voltage Current Limiter and Ambient Compensation Scheme to Improve the Read Window. A-SSCC 2018: 13-16 - [c8]Chung-Cheng Chou, Zheng-Jun Lin, Pei-Ling Tseng, Chih-Feng Li, Chih-Yang Chang, Wei-Chi Chen, Yu-Der Chih, Tsung-Yung Jonathan Chang:
An N40 256K×44 embedded RRAM macro with SL-precharge SA and low-voltage current limiter to improve read and write performance. ISSCC 2018: 478-480 - [c7]Qing Dong, Zhehong Wang, Jongyup Lim, Yiqun Zhang, Yi-Chun Shih, Yu-Der Chih, Tsung-Yung Jonathan Chang, David T. Blaauw, Dennis Sylvester:
A 1Mb 28nm STT-MRAM with 2.8ns read access time at 1.2V VDD using single-cap offset-cancelled sense amplifier and in-situ self-write-termination. ISSCC 2018: 480-482 - [c6]Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee, Hon-Jarn Lin, Yu-Lin Chen, Ku-Feng Lin, Ta-Ching Yeh, Hung-Chang Yu, Harry Chuang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
Logic Process Compatible 40NM 16MB, Embedded Perpendicular-MRAM with Hybrid-Resistance Reference, Sub-μA Sensing Resolution, and 17.5NS Read Access Time. VLSI Circuits 2018: 79-80 - [c5]Kaiyuan Yang, Qing Dong, Zhehong Wang, Yi-Chun Shih, Yu-Der Chih, Tsung-Yung Jonathan Chang, David T. Blaauw, Dennis Sylvester:
A 28NM Integrated True Random Number Generator Harvesting Entropy from MRAM. VLSI Circuits 2018: 171-172 - 2017
- [c4]Chia-Fu Lee, Hon-Jarn Lin, Chiu-Wang Lien, Yu-Der Chih, Tsung-Yung Jonathan Chang:
A 1.4Mb 40-nm embedded ReRAM macro with 0.07um2 bit cell, 2.7mA/100MHz low-power read and hybrid write verify for high endurance application. A-SSCC 2017: 9-12 - [c3]Shau-Yu Chou, Yu-Shiang Chen, Jun-Hao Chang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
11.3 A 10nm 32Kb low-voltage logic-compatible anti-fuse one-time-programmable memory with anti-tampering sensing scheme. ISSCC 2017: 200-201 - 2015
- [j1]Meng-Fan Chang, Jui-Jen Wu, Tun-Fei Chien, Yen-Chen Liu, Ting-Chin Yang, Wen-Chao Shen, Ya-Chin King, Chrong Jung Lin, Ku-Feng Lin, Yu-Der Chih, Tsung-Yung Jonathan Chang:
Low VDDmin Swing-Sample-and-Couple Sense Amplifier and Energy-Efficient Self-Boost-Write-Termination Scheme for Embedded ReRAM Macros Against Resistance and Switch-Time Variations. IEEE J. Solid State Circuits 50(11): 2786-2795 (2015) - 2014
- [c2]Meng-Fan Chang, Jui-Jen Wu, Tun-Fei Chien, Yen-Chen Liu, Ting-Chin Yang, Wen-Chao Shen, Ya-Chin King, Chorng-Jung Lin, Ku-Feng Lin, Yu-Der Chih, Sreedhar Natarajan, Tsung-Yung Jonathan Chang:
19.4 embedded 1Mb ReRAM in 28nm CMOS with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-boost-write-termination scheme. ISSCC 2014: 332-333 - 2013
- [c1]Hung-Chang Yu, Kai-Chun Lin, Ku-Feng Lin, Chin-Yi Huang, Yu-Der Chih, Tong-Chern Ong, Tsung-Yung Jonathan Chang, Sreedhar Natarajan, Luan C. Tran:
Cycling endurance optimization scheme for 1Mb STT-MRAM in 40nm technology. ISSCC 2013: 224-225
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 19:32 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint