default search action
Machine Learning: Science and Technology, Volume 3
Volume 3, Number 1, March 2022
- Peter Cha, Paul Ginsparg, Felix Wu, Juan Carrasquilla, Peter L. McMahon, Eun-Ah Kim:
Attention-based quantum tomography. 01 - Sergei Manzhos, Eita Sasaki, Manabu Ihara:
Easy representation of multivariate functions with low-dimensional terms via Gaussian process regression kernel design: applications to machine learning of potential energy surfaces and kinetic energy densities from sparse data. 01 - Siddharth Mishra-Sharma:
Inferring dark matter substructure with astrometric lensing beyond the power spectrum. 01 - Stefanie Czischek, Victor Yon, Marc-Antoine Genest, Marc-Antoine Roux, Sophie Rochette, Julien Camirand Lemyre, Mathieu Moras, Michel Pioro-Ladriere, Dominique Drouin, Yann Beilliard, Roger G. Melko:
Miniaturizing neural networks for charge state autotuning in quantum dots. 15001 - Anna Dawid, Patrick Huembeli, Michal Tomza, Maciej Lewenstein, Alexandre Dauphin:
Hessian-based toolbox for reliable and interpretable machine learning in physics. 15002 - Maxim A. Ziatdinov, Ayana Ghosh, Sergei V. Kalinin:
Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process. 15003 - Ryan-Rhys Griffiths, Alexander A. Aldrick, Miguel Garcia-Ortegon, Vidhi Lalchand, Alpha A. Lee:
Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation. 15004 - Kasra Asnaashari, Roman V. Krems:
Gradient domain machine learning with composite kernels: improving the accuracy of PES and force fields for large molecules. 15005 - Harold Erbin, Riccardo Finotello, Robin Schneider, Mohamed Tamaazousti:
Deep multi-task mining Calabi-Yau four-folds. 15006 - Hongyu Shen, Eliu A. Huerta, Eamonn O'Shea, Prayush Kumar, Zhizhen Zhao:
Statistically-informed deep learning for gravitational wave parameter estimation. 15007 - Søren Ager Meldgaard, Jonas Köhler, Henrik Lund Mortensen, Mads-Peter V. Christiansen, Frank Noé, Bjørk Hammer:
Generating stable molecules using imitation and reinforcement learning. 15008 - Moritz Hoffmann, Martin Scherer, Tim Hempel, Andreas Mardt, Brian de Silva, Brooke E. Husic, Stefan Klus, Hao Wu, J. Nathan Kutz, Steven L. Brunton, Frank Noé:
Deeptime: a Python library for machine learning dynamical models from time series data. 15009 - Mohammadreza Noormandipour, Sun Youran, Babak Haghighat:
Restricted Boltzmann machine representation for the groundstate and excited states of Kitaev Honeycomb model. 15010 - Johannes Gedeon, Jonathan Schmidt, Matthew J. P. Hodgson, Jack Wetherell, Carlos L. Benavides-Riveros, Miguel A. L. Marques:
Machine learning the derivative discontinuity of density-functional theory. 15011 - Jonas Busk, Peter Bjørn Jørgensen, Arghya Bhowmik, Mikkel N. Schmidt, Ole Winther, Tejs Vegge:
Calibrated uncertainty for molecular property prediction using ensembles of message passing neural networks. 15012 - Muhammad Firmansyah Kasim, Duncan Watson-Parris, Lucia Deaconu, Sophy Oliver, Peter W. Hatfield, Dustin H. Froula, Gianluca Gregori, Matt Jarvis, Samar Khatiwala, Jun Korenaga, Jacob Topp-Mugglestone, Eleonora Viezzer, Sam M. Vinko:
Building high accuracy emulators for scientific simulations with deep neural architecture search. 15013 - Jose M. Clavijo, Paul Glaysher, Jenia Jitsev, Judith M. Katzy:
Adversarial domain adaptation to reduce sample bias of a high energy physics event classifier *. 15014 - Diogo R. Ferreira, Tiago A. Martins, Paulo Rodrigues:
Explainable deep learning for the analysis of MHD spectrograms in nuclear fusion. 15015 - Artan Sheshmani, Yi-Zhuang You:
Categorical representation learning: morphism is all you need. 15016 - Ian Convy, William J. Huggins, Haoran Liao, K. Birgitta Whaley:
Mutual information scaling for tensor network machine learning. 15017 - Samuel Genheden, Ola Engkvist, Esben Jannik Bjerrum:
Fast prediction of distances between synthetic routes with deep learning. 15018 - Maximilian P. Niroomand, Conor T. Cafolla, John W. R. Morgan, David J. Wales:
Characterising the area under the curve loss function landscape. 15019 - Chenhua Geng, Hong-Ye Hu, Yijian Zou:
Differentiable programming of isometric tensor networks. 15020 - Stephen B. Menary, Darren D. Price:
Learning to discover: expressive Gaussian mixture models for multi-dimensional simulation and parameter inference in the physical sciences. 15021 - Ross Irwin, Spyridon Dimitriadis, Jiazhen He, Esben Jannik Bjerrum:
Chemformer: a pre-trained transformer for computational chemistry. 15022 - Tianshu Wang, Peter Melchior:
Graph neural network-based resource allocation strategies for multi-object spectroscopy. 15023 - Nicole Creange, Ondrej Dyck, Rama K. Vasudevan, Maxim A. Ziatdinov, Sergei V. Kalinin:
Towards automating structural discovery in scanning transmission electron microscopy *. 15024 - Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, Hsi-Sheng Goan, Ying-Jer Kao:
Variational quantum reinforcement learning via evolutionary optimization. 15025 - Suryanarayana Maddu, Dominik Sturm, Christian L. Müller, Ivo F. Sbalzarini:
Inverse Dirichlet weighting enables reliable training of physics informed neural networks. 15026 - Harold Erbin, Vincent Lahoche, Dine Ousmane Samary:
Non-perturbative renormalization for the neural network-QFT correspondence. 15027 - Somesh Mohapatra, Joyce An, Rafael Gómez-Bombarelli:
Chemistry-informed macromolecule graph representation for similarity computation, unsupervised and supervised learning. 15028 - Markus Fleck, Michael G. Müller, Noah Weber, Christopher Trummer:
Decoupled coordinates for machine learning-based molecular fragment linking. 15029 - Federica Gerace, Luca Saglietti, Stefano Sarao Mannelli, Andrew M. Saxe, Lenka Zdeborová:
Probing transfer learning with a model of synthetic correlated datasets. 15030 - Kadierdan Kaheman, Steven L. Brunton, J. Nathan Kutz:
Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data. 15031 - Carsten G. Staacke, Simon Wengert, Christian Kunkel, Gábor Csányi, Karsten Reuter, Johannes T. Margraf:
Kernel charge equilibration: efficient and accurate prediction of molecular dipole moments with a machine-learning enhanced electron density model. 15032 - Wei Mu, Alexander I. Himmel, Bryan Ramson:
Photon detection probability prediction using one-dimensional generative neural network. 15033 - Quoc Chuong Nguyen, Le Bin Ho, Lan Nguyen Tran, Hung Q. Nguyen:
Qsun: an open-source platform towards practical quantum machine learning applications. 15034 - Bogdan Kustowski, Jim A. Gaffney, Brian K. Spears, Gemma J. Anderson, Rushil Anirudh, Peer-Timo Bremer, Jayaraman J. Thiagarajan, Michael K. G. Kruse, Ryan Nora:
Suppressing simulation bias in multi-modal data using transfer learning. 15035
Volume 3, Number 2, June 2022
- Tahir I. Yusufaly:
Extending the relative seriality formalism for interpretable deep learning of normal tissue complication probability models. 24001 - Eric A. Moreno, Bartlomiej Borzyszkowski, Maurizio Pierini, Jean-Roch Vlimant, Maria Spiropulu:
Source-agnostic gravitational-wave detection with recurrent autoencoders. 25001 - J. C. S. Kadupitiya, Geoffrey C. Fox, Vikram Jadhao:
Solving Newton's equations of motion with large timesteps using recurrent neural networks based operators. 25002 - Bastian Kaspschak, Ulf-G. Meißner:
Three-body renormalization group limit cycles based on unsupervised feature learning. 25003 - Maximilian P. Niroomand, John W. R. Morgan, Conor T. Cafolla, David J. Wales:
On the capacity and superposition of minima in neural network loss function landscapes. 25004 - Eri Teruya, Tadashi Takeuchi, Hidekazu Morita, Takayuki Hayashi, Kanta Ono:
ARTS: autonomous research topic selection system using word embeddings and network analysis. 25005 - Rainier Barrett, Mehrad Ansari, Gourab Ghoshal, Andrew D. White:
Simulation-based inference with approximately correct parameters via maximum entropy. 25006 - Massimiliano Lupo Pasini, Pei Zhang, Samuel Temple Reeve, Jong Youl Choi:
Multi-task graph neural networks for simultaneous prediction of global and atomic properties in ferromagnetic systems *. 25007 - Konstantin T. Matchev, Prasanth Shyamsundar:
InClass nets: independent classifier networks for nonparametric estimation of conditional independence mixture models and unsupervised classification. 25008 - Peter Wirnsberger, George Papamakarios, Borja Ibarz, Sébastien Racanière, Andrew J. Ballard, Alexander Pritzel, Charles Blundell:
Normalizing flows for atomic solids. 25009 - Juan Yao, Ce Wang, Zhiyuan Yao, Hui Zhai:
Noise enhanced neural networks for analytic continuation. 25010 - Ludwig Winkler, Klaus-Robert Müller, Huziel E. Sauceda:
High-fidelity molecular dynamics trajectory reconstruction with bi-directional neural networks. 25011 - Benedikt Maier, S. M. Narayanan, G. de Castro, Maxim Goncharov, Christoph Paus, Matthias Schott:
Pile-up mitigation using attention. 25012 - Carlo R. da Cunha, Nobuyuki P. Aoki, David K. Ferry, Ying-Cheng Lai:
A method for finding the background potential of quantum devices from scanning gate microscopy data using machine learning. 25013 - Erik Buhmann, Sascha Diefenbacher, Daniel Hundhausen, Gregor Kasieczka, William Korcari, Engin Eren, Frank Gaede, Katja Krüger, Peter McKeown, Lennart Rustige:
Hadrons, better, faster, stronger. 25014 - Narbota Amanova, Jörg Martin, Clemens Elster:
Explainability for deep learning in mammography image quality assessment. 25015 - Adrian Alan Pol, Thea Aarrestad, Ekaterina Govorkova, Roi Halily, Anat Klempner, Tal Kopetz, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Olya Sirkin, Sioni Summers:
Lightweight jet reconstruction and identification as an object detection task. 25016
Volume 3, Number 3, September 2022
- Yu-Wei Chang, Laura Natali, Oveis Jamialahmadi, Stefano Romeo, Joana B. Pereira, Giovanni Volpe:
Neural network training with highly incomplete medical datasets. 35001 - Leander Thiele, Miles D. Cranmer, William R. Coulton, Shirley Ho, David N. Spergel:
Predicting the thermal Sunyaev-Zel'dovich field using modular and equivariant set-based neural networks. 35002 - Mary Touranakou, Nadezda Chernyavskaya, Javier M. Duarte, Dimitrios Gunopulos, Raghav Kansal, Breno Orzari, Maurizio Pierini, Thiago Tomei, Jean-Roch Vlimant:
Particle-based fast jet simulation at the LHC with variational autoencoders. 35003 - Oriel Kiss, Francesco Tacchino, Sofia Vallecorsa, Ivano Tavernelli:
Quantum neural networks force fields generation. 35004 - Carlo Lucibello, Fabrizio Pittorino, Gabriele Perugini, Riccardo Zecchina:
Deep learning via message passing algorithms based on belief propagation. 35005 - Michelle L. J. Lollie, Fatemeh Mostafavi, Narayan Bhusal, Mingyuan Hong, Chenglong You, Roberto de J. León-Montiel, Omar S. Magaña-Loaiza, Mario Alan Quiroz-Juárez:
High-dimensional encryption in optical fibers using spatial modes of light and machine learning. 35006 - Aleksandra Ciprijanovic, Diana Kafkes, Gregory F. Snyder, F. Javier Sánchez, Gabriel Nathan Perdue, Kevin Pedro, Brian Nord, Sandeep Madireddy, Stefan M. Wild:
DeepAdversaries: examining the robustness of deep learning models for galaxy morphology classification. 35007 - Luca A. Thiede, Mario Krenn, AkshatKumar Nigam, Alán Aspuru-Guzik:
Curiosity in exploring chemical spaces: intrinsic rewards for molecular reinforcement learning. 35008 - Hong-Ye Hu, Dian Wu, Yi-Zhuang You, Bruno A. Olshausen, Yubei Chen:
RG-Flow: a hierarchical and explainable flow model based on renormalization group and sparse prior. 35009 - Harsh Bhatia, Jayaraman J. Thiagarajan, Rushil Anirudh, T. S. Jayram, Tomas Oppelstrup, Helgi I. Ingólfsson, Felice C. Lightstone, Peer-Timo Bremer:
A biology-informed similarity metric for simulated patches of human cell membrane. 35010 - Sven Krippendorf, Michael Spannowsky:
A duality connecting neural network and cosmological dynamics. 35011 - Joseph Musielewicz, Xiaoxiao Wang, Tian Tian, Zachary W. Ulissi:
FINETUNA: fine-tuning accelerated molecular simulations. 3 - James Kahn, Ilias Tsaklidis, Oskar Taubert, Lea Reuter, Giulio Dujany, Tobias Boeckh, Arthur Thaller, Pablo Goldenzweig, Florian Bernlochner, Achim Streit, Markus Götz:
Learning tree structures from leaves for particle decay reconstruction. 35012 - Carolina Herrera Segura, Edison Montoya, Diego Tapias:
Subaging in underparametrized deep neural networks. 35013 - Magdalena Larfors, André Lukas, Fabian Ruehle, Robin Schneider:
Numerical metrics for complete intersection and Kreuzer-Skarke Calabi-Yau manifolds. 35014 - Raimon Fabregat, Puck van Gerwen, Matthieu Haeberle, Friedrich Eisenbrand, Clémence Corminboeuf:
Metric learning for kernel ridge regression: assessment of molecular similarity. 35015 - Jayant Jha, Meysam Hashemi, Anirudh Nihalani Vattikonda, Huifang E. Wang, Viktor K. Jirsa:
Fully Bayesian estimation of virtual brain parameters with self-tuning Hamiltonian Monte Carlo. 35016 - Luca Anzalone, Tommaso Diotalevi, Daniele Bonacorsi:
Improving parametric neural networks for high-energy physics (and beyond). 35017
Volume 3, Number 4, December 2022
- Sanjaya Lohani, Joseph M. Lukens, Ryan T. Glasser, Thomas A. Searles, Brian T. Kirby:
Data-centric machine learning in quantum information science. 4 - Moritz Reh, Martin Gärttner:
Variational Monte Carlo approach to partial differential equations with neural networks. 4 - Gourav Khullar, Brian Nord, Aleksandra Ciprijanovic, Jason Poh, Fei Xu:
DIGS: deep inference of galaxy spectra with neural posterior estimation. 4 - Rama K. Vasudevan, Erick Orozco, Sergei V. Kalinin:
Discovering mechanisms for materials microstructure optimization via reinforcement learning of a generative model. 4 - Jose M. Munoz, Ilyes Batatia, Christoph Ortner:
Boost invariant polynomials for efficient jet tagging. 4 - Carl Poelking, Felix A. Faber, Bingqing Cheng:
BenchML: an extensible pipelining framework for benchmarking representations of materials and molecules at scale. 40501 - Bahram Jalali, Yiming Zhou, Achuta Kadambi, Vwani Roychowdhury:
Physics-AI symbiosis. 41001 - Muhammad Izzatullah, Isa Eren Yildirim, Umair bin Waheed, Tariq Alkhalifah:
Laplace HypoPINN: physics-informed neural network for hypocenter localization and its predictive uncertainty. 45001 - Arwen V. Bradley, Carlos Alberto Gomez-Uribe, Manish Reddy Vuyyuru:
Shift-curvature, SGD, and generalization. 45002 - Nathan A Garland, Romit Maulik, Qi Tang, Xian-Zhu Tang, Prasanna Balaprakash:
Efficient data acquisition and training of collisional-radiative model artificial neural network surrogates through adaptive parameter space sampling. 45003 - Lucas Böttcher, Thomas Asikis:
Near-optimal control of dynamical systems with neural ordinary differential equations. 45004 - Puck van Gerwen, Alberto Fabrizio, Matthew D. Wodrich, Clémence Corminboeuf:
Physics-based representations for machine learning properties of chemical reactions. 45005 - Lorenz Vaitl, Kim A. Nicoli, Shinichi Nakajima, Pan Kessel:
Gradients should stay on path: better estimators of the reverse- and forward KL divergence for normalizing flows. 45006 - Sebastian Johann Wetzel, Roger G. Melko, Isaac Tamblyn:
Twin neural network regression is a semi-supervised regression algorithm. 45007 - Lenz Fiedler, Nils Hoffmann, Parvez Mohammed, Gabriel A. Popoola, Tamar Yovell, Vladyslav Oles, J. Austin Ellis, Sivasankaran Rajamanickam, Attila Cangi:
Training-free hyperparameter optimization of neural networks for electronic structures in matter. 45008 - Yi Yu, Karl Börjesson:
Chemical transformer compression for accelerating both training and inference of molecular modeling. 45009 - Sina Stocker, Johannes Gasteiger, Florian Becker, Stephan Günnemann, Johannes T. Margraf:
How robust are modern graph neural network potentials in long and hot molecular dynamics simulations? 45010 - Nicolò Ghielmetti, Vladimir Loncar, Maurizio Pierini, Marcel Roed, Sioni Summers, Thea Aarrestad, Christoffer Petersson, Hampus Linander, Jennifer Ngadiuba, Kelvin Lin, Philip C. Harris:
Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml. 45011 - Cristiano Fanelli, James Giroux, Z. Papandreou:
'Flux+Mutability': a conditional generative approach to one-class classification and anomaly detection. 45012 - Jihye Baek, Avice M. O'Connell, Kevin J. Parker:
Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning. 45013 - Mohammad Tohidi Vahdat, Kumar Agrawal Varoon, Giovanni Pizzi:
Machine-learning accelerated identification of exfoliable two-dimensional materials. 45014 - Rishikesh Magar, Yuyang Wang, Cooper Lorsung, Chen Liang, Hariharan Ramasubramanian, Peiyuan Li, Amir Barati Farimani:
AugLiChem: data augmentation library of chemical structures for machine learning. 45015 - Luis E. Herrera Rodríguez, Arif Ullah, Kennet J. Rueda Espinosa, Pavlo O. Dral, Alexei A Kananenka:
A comparative study of different machine learning methods for dissipative quantum dynamics. 45016 - Haoyan Huo, Matthias Rupp:
Unified representation of molecules and crystals for machine learning. 45017 - Victor Fung, Shuyi Jia, Jiaxin Zhang, Sirui Bi, Junqi Yin, Panchapakesan Ganesh:
Atomic structure generation from reconstructing structural fingerprints. 45018 - Pallavi Malavath, Nagaraju Devarakonda:
Coot optimization based Enhanced Global Pyramid Network for 3D hand pose estimation. 45019 - Sergey N. Pozdnyakov, Michele Ceriotti:
Incompleteness of graph neural networks for points clouds in three dimensions. 45020 - L. Storm, Kristian Gustavsson, Bernhard Mehlig:
Constraints on parameter choices for successful time-series prediction with echo-state networks. 45021 - Mathias Schreiner, Arghya Bhowmik, Tejs Vegge, Peter Bjørn Jørgensen, Ole Winther:
NeuralNEB - neural networks can find reaction paths fast. 45022 - W. Huang, Amanda S. Barnard:
Federated data processing and learning for collaboration in the physical sciences. 45023 - Paul A. Monderkamp, Fabian Jan Schwarzendahl, Michael Andreas Klatt, Hartmut Löwen:
Active particles using reinforcement learning to navigate in complex motility landscapes. 45024 - Hendrik Poulsen Nautrup, Tony Metger, Raban Iten, Sofiène Jerbi, Lea M. Trenkwalder, Henrik Wilming, Hans J. Briegel, Renato Renner:
Operationally meaningful representations of physical systems in neural networks. 45025 - Stephen Whitelam, Viktor Selin, Ian Benlolo, Corneel Casert, Isaac Tamblyn:
Training neural networks using Metropolis Monte Carlo and an adaptive variant. 45026 - Ian Convy, K. Birgitta Whaley:
Interaction decompositions for tensor network regression. 45027 - Yuge Hu, Joseph Musielewicz, Zachary W. Ulissi, Andrew J. Medford:
Robust and scalable uncertainty estimation with conformal prediction for machine-learned interatomic potentials. 45028 - Woon Hyung Cho, Jiseon Shin, Young Duck Kim, George J. Jung:
Pixel-wise classification in graphene-detection with tree-based machine learning algorithms. 45029 - Junyu Liu, Zimu Li, Han Zheng, Xiao Yuan, Jinzhao Sun:
Towards a variational Jordan-Lee-Preskill quantum algorithm. 45030 - Connor Allen, Albert P. Bartók:
Optimal data generation for machine learned interatomic potentials. 45031 - Nikhil V. S. Avula, Shivanand K. Veesam, Sudarshan Behera, Sundaram Balasubramanian:
Building robust machine learning models for small chemical science data: the case of shear viscosity of fluids. 45032 - Wonkyeong Lee, Eunbyeol Cho, Wonjin Kim, Hyebin Choi, Kyongmin Sarah Beck, Hyun Jung Yoon, Jongduk Baek, Jang-Hwan Choi:
No-reference perceptual CT image quality assessment based on a self-supervised learning framework. 45033 - Yuta Suzuki, Tatsunori Taniai, Kotaro Saito, Yoshitaka Ushiku, Kanta Ono:
Self-supervised learning of materials concepts from crystal structures via deep neural networks. 45034 - Amilson R. Fritsch, Shangjie Guo, Sophia M. Koh, Ian B. Spielman, Justyna P. Zwolak:
Dark solitons in Bose-Einstein condensates: a dataset for many-body physics research. 47001
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.