default search action
User Modeling and User-Adapted Interaction, Volume 34
Volume 34, Number 1, March 2024
- Francesco Barile, Tim Draws, Oana Inel, Alisa Rieger, Shabnam Najafian, Amir Ebrahimi Fard, Rishav Hada, Nava Tintarev:
Evaluating explainable social choice-based aggregation strategies for group recommendation. 1-58 - Yashar Deldjoo, Dietmar Jannach, Alejandro Bellogín, Alessandro Difonzo, Dario Zanzonelli:
Fairness in recommender systems: research landscape and future directions. 59-108 - Naieme Hazrati, Francesco Ricci:
Choice models and recommender systems effects on users' choices. 109-145 - Ine Coppens, Toon De Pessemier, Luc Martens:
Connecting physical activity with context and motivation: a user study to define variables to integrate into mobile health recommenders. 147-181 - Yue Liu, Palakorn Achananuparp, Ee-Peng Lim:
Non-binary evaluation of next-basket food recommendation. 183-227 - Ramon Ruiz-Dolz, Joaquín Taverner, Stella M. Heras Barberá, Ana García-Fornes:
Persuasion-enhanced computational argumentative reasoning through argumentation-based persuasive frameworks. 229-258
Volume 34, Number 2, April 2024
- Bilikis Banire, Dena Al-Thani, Marwa K. Qaraqe:
One size does not fit all: detecting attention in children with autism using machine learning. 259-291 - Diana Castilla, Omar del Tejo Catalá, Patricia Pons, François Signol, Beatriz Rey, Carlos Suso-Ribera, Juan-Carlos Perez-Cortes:
Improving the understanding of web user behaviors through machine learning analysis of eye-tracking data. 293-322 - Alexandra I. Cristea, Ahmed Alamri, Mohammad Alshehri, Filipe Dwan Pereira, Armando M. Toda, Elaine Harada T. de Oliveira, Craig D. Stewart:
The engage taxonomy: SDT-based measurable engagement indicators for MOOCs and their evaluation. 323-374 - Oren Barkan, Tom Shaked, Yonatan Fuchs, Noam Koenigstein:
Modeling users' heterogeneous taste with diversified attentive user profiles. 375-405 - Alain D. Starke, Cataldo Musto, Amon Rapp, Giovanni Semeraro, Christoph Trattner:
"Tell Me Why": using natural language justifications in a recipe recommender system to support healthier food choices. 407-440 - Gabrielle Alves, Dietmar Jannach, Rodrigo Ferrari de Souza, Daniela E. Damian, Marcelo Garcia Manzato:
Digitally nudging users to explore off-profile recommendations: here be dragons. 441-481
Volume 34, Number 3, July 2024
- Ludovico Boratto, Alexander Felfernig, Martin Stettinger, Marko Tkalcic:
Preface on the special issue on group recommender systems. 483-487 - Thi Ngoc Trang Tran, Alexander Felfernig, Viet Man Le:
An overview of consensus models for group decision-making and group recommender systems. 489-547 - Shabnam Najafian, Geoff Musick, Bart P. Knijnenburg, Nava Tintarev:
How do people make decisions in disclosing personal information in tourism group recommendations in competitive versus cooperative conditions? 549-581 - Jianwen Sun, Shangheng Du, Ruxia Liang, Xiaoxuan Shen, Qing Li, Sannyuya Liu, Zongkai Yang:
Deep adversarial group recommendation with user feature space separation. 583-615 - Dennis Paulino, António Correia, João Barroso, Hugo Paredes:
Cognitive personalization for online microtask labor platforms: A systematic literature review. 617-658 - Cataldo Musto, Giuseppe Spillo, Giovanni Semeraro:
Harnessing distributional semantics to build context-aware justifications for recommender systems. 659-690 - Josef Bauer, Dietmar Jannach:
Hybrid session-aware recommendation with feature-based models. 691-728 - Radek Pelánek:
Leveraging response times in learning environments: opportunities and challenges. 729-752 - Matthew Haruyama, Kazuyoshi Hidaka:
What influences users to provide explicit feedback? A case of food delivery recommenders. 753-796 - Laila Alrajhi, Ahmed Alamri, Filipe Dwan Pereira, Alexandra I. Cristea, Elaine H. T. Oliveira:
Solving the imbalanced data issue: automatic urgency detection for instructor assistance in MOOC discussion forums. 797-852 - Wei Wang, Hourieh Khalajzadeh, John C. Grundy, Anuradha Madugalla, Jennifer McIntosh, Humphrey O. Obie:
Adaptive user interfaces in systems targeting chronic disease: a systematic literature review. 853-920
Volume 34, Number 4, September 2024
- Benjamin Kille, Andreas Lommatzsch, Jürgen Ziegler, Özlem Özgöbek:
Preface to the special issue on news personalization and analytics. 921-923 - Zhixin Pu, Michael A. Beam:
The impacts of relevance of recommendations and goal commitment on user experience in news recommender design. 925-953 - Stefaan Vercoutere, Glen Joris, Toon De Pessemier, Luc Martens:
Improving selection diversity using hybrid graph-based news recommenders. 955-993 - Alain D. Starke, Vegard Solberg, Sebastian Øverhaug, Christoph Trattner:
Examining the merits of feature-specific similarity functions in the news domain using human judgments. 995-1042 - Keshopan Arunthavachelvan, Shaina Raza, Chen Ding:
A deep neural network approach for fake news detection using linguistic and psychological features. 1043-1070 - Ali Azizi, Saeedeh Momtazi:
SNRBERT: session-based news recommender using BERT. 1071-1085 - Sidney K. D'Mello, Nicholas D. Duran, Amanda Michaels, Angela E. B. Stewart:
Improving collaborative problem-solving skills via automated feedback and scaffolding: a quasi-experimental study with CPSCoach 2.0. 1087-1125 - Ines Saric-Grgic, Ani Grubisic, Angelina Gaspar:
Twenty-Five Years of Bayesian knowledge tracing: a systematic review. 1127-1173 - Oladapo Oyebode, Darren Steeves, Rita Orji:
Persuasive strategies and emotional states: towards designing personalized and emotion-adaptive persuasive systems. 1175-1225 - Zhiyu Chen, Zhilong Shan, Yanhua Zeng:
Informative representations for forgetting-robust knowledge tracing. 1227-1249 - Oliver W. Klaproth, Emmanuelle Dietz, Juliane Pawlitzki, Laurens R. Krol, Thorsten O. Zander, Nele Russwinkel:
Modeling of anticipation using instance-based learning: application to automation surprise in aviation using passive BCI and eye-tracking data. 1251-1281 - Miguel Portaz, Alberto Corbi, Alberto Casas-Ortiz, Olga C. Santos:
Exploring raw data transformations on inertial sensor data to model user expertise when learning psychomotor skills. 1283-1325 - Debasmita Mukherjee, Jayden Hong, Haripriya Vats, Sooyeon Bae, Homayoun Najjaran:
Personalization of industrial human-robot communication through domain adaptation based on user feedback. 1327-1367 - Albert Saiapin, Gleb Balitskiy, Daniel Bershatsky, Aleksandr Katrutsa, Evgeny Frolov, Alexey A. Frolov, Ivan V. Oseledets, Vitaliy Kharin:
Federated privacy-preserving collaborative filtering for on-device next app prediction. 1369-1398 - Radek Pelánek, Tomás Effenberger, Petr Jarusek:
Personalized recommendations for learning activities in online environments: a modular rule-based approach. 1399-1430 - Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete:
An explainable content-based approach for recommender systems: a case study in journal recommendation for paper submission. 1431-1465 - Maarten van der Velde, Florian Sense, Jelmer P. Borst, Hedderik van Rijn:
Large-scale evaluation of cold-start mitigation in adaptive fact learning: Knowing "what" matters more than knowing "who". 1467-1491 - Mohammad Mustaneer Rahman, Robert Ollington, Soonja Yeom, Nadia Ollington:
Generalisable sensor-free frustration detection in online learning environments using machine learning. 1493-1527
Volume 34, Number 5, November 2024
- Vito Walter Anelli, Li Chen, Gerard de Melo, Julian J. McAuley, Fedelucio Narducci, Azzurra Ragone:
Preface to the special issue on conversational recommender systems: theory, models, evaluations, and trends. 1529-1533 - Yuan Ma, Jürgen Ziegler:
Investigating meta-intents: user interaction preferences in conversational recommender systems. 1535-1580 - Martina Di Bratto, Antonio Origlia, Maria Di Maro, Sabrina Mennella:
Linguistics-based dialogue simulations to evaluate argumentative conversational recommender systems. 1581-1611 - Stefano Valtolina, Ricardo A. Matamoros A., Francesco Epifania:
Design of a conversational recommender system in education. 1613-1641 - Siamak Farshidi, Kiyan Rezaee, Sara Mazaheri, Amir Hossein Rahimi, Ali Dadashzadeh, Morteza Ziabakhsh, Sadegh Eskandari, Slinger Jansen:
Understanding user intent modeling for conversational recommender systems: a systematic literature review. 1643-1706 - Yu Xia, Zhihui Xie, Tong Yu, Canzhe Zhao, Shuai Li:
Toward joint utilization of absolute and relative bandit feedback for conversational recommendation. 1707-1744
- Mark Abdelshiheed, Robert Moulder, John Wesley Hostetter, Tiffany Barnes, Min Chi:
Example, nudge, or practice? Assessing metacognitive knowledge transfer of factual and procedural learners. 1745-1775 - Anastasiia Klimashevskaia, Dietmar Jannach, Mehdi Elahi, Christoph Trattner:
A survey on popularity bias in recommender systems. 1777-1834 - Ine Coppens, Toon De Pessemier, Luc Martens:
Exploring the added effect of three recommender system techniques in mobile health interventions for physical activity: a longitudinal randomized controlled trial. 1835-1890 - Matej Bevec, Marko Tkalcic, Matevz Pesek:
Hybrid music recommendation with graph neural networks. 1891-1928 - Angela Carrera-Rivera, Felix Larrinaga, Ganix Lasa, Giovanna Martínez-Arellano, Gorka Unamuno:
AdaptUI: A Framework for the development of Adaptive User Interfaces in Smart Product-Service Systems. 1929-1980 - Shivangi Gheewala, Shuxiang Xu, Soonja Yeom:
Deep shared learning and attentive domain mapping for cross-domain recommendation. 1981-2038 - Giuseppe Spillo, Cataldo Musto, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro:
Recommender systems based on neuro-symbolic knowledge graph embeddings encoding first-order logic rules. 2039-2083 - Amirhossein Ghadami, Thomas Tran:
TriDeepRec: a hybrid deep learning approach to content- and behavior-based recommendation systems. 2085-2114 - Ines Saric-Grgic, Ani Grubisic, Angelina Gaspar:
Correction: Twenty-Five Years of Bayesian knowledge tracing: a systematic review. 2115
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.