Search the repository
Recently published
107377 results
- Trabajos de Grado Diseño Gráfico Udes (Cúcuta)Este conjunto de datos muestra los proyectos creados por estudiantes de Diseño Gráfico de la Universidad de Santander. En resumen es la producción creada por los estudiantes.
- Dataset
- Language development in the brain of infants of SMI mothers (the CAPRI study)This dataset includes fNIRS and demographic data for 30 9-month-old infants of mothers with severe mental illness (SMI) and 30 control infants. Experiment 1 studies neural responses to voice and non-voice sounds. Experiment 2 studies neural responses to a semantically neutral sentence ('Dogs are sitting by the door') pronounced with angry, happy, and neutral prosody. In the Non-neural data, group 1 is CAPRI and group 2 is non-CAPRI. Participant order is the same across files.
- Dataset
- Order Picking Dataset from a Warehouse of a Footwear Manufacturing CompanyThis dataset originates from a real-world footwear manufacturing warehouse and provides a comprehensive foundation for benchmarking research in warehouse order-picking operations. Data was collected via SQL queries on the company’s Warehouse Management System (WMS), resulting in diverse formats such as CSV files, CAD layouts, and Python scripts. The dataset includes geometric representations of the warehouse layout, with Cartesian-mapped storage locations, aisles, and central depots, detailed product classifications, storage positions, picking wave information, and routing paths. It supports evaluating various storage strategies, including Random, Class-Based, Dedicated, and Hybrid configurations, enabling the analysis of their impact on order-picking efficiency. Temporal data captures operational trends, including timestamps and operator-specific performance, offering insights into workflow efficiency and workload balancing. Anonymization and randomization techniques were applied while retaining realistic operational patterns to preserve confidentiality. This dataset is highly versatile and suitable for developing optimization algorithms for picker routing, order batching, wave generation, and intralogistics, as well as for advancing automation and robotics research through navigation-specific data for autonomous guided vehicles (AGVs) and robotic systems. This dataset significantly contributes to warehouse logistics research and operational optimization by supporting a wide range of applications.
- Dataset
- Single-Molecule m6A Detection Empowered by Endogenous Labeling Unveils Complexities Across RNA IsoformsOriginal data of this paper
- Dataset
- Sequential Contests experiment replication materialsThis pack of replication materials contains (i) Stata data file Compiled_Data.dta; (ii) Stata do file data_analysis.do; (iii) Mathematica notebook Calculations.nb containing computations for Section 4.2.2 of the paper; (iv) zTree programs Sequential_3.ztt, Sequential_1_2.ztt, Sequential_2_1.ztt and Sequential_1_1_1.ztt corresponding to the 4 treatments in the experiment; (v) Experimental instructions for treatment (1,1,1). The data was collected in the XSFS Lab at Florida State University in 2018-2019. A detailed description of the experiment is available in our article "Contests with sequential moves: An experimental study" forthcoming in the Journal of the Economic Science Association. A working paper version is available online at https://arxiv.org/abs/2409.06230
- Dataset
- Diseño instruccional y ecologías del aprendizajeInvestigación en proceso. A partir de las condiciones de los procesos educativos maximizadas en pandemia, surge la necesidad de incorporar el uso de las tecnologías digitales en el proceso de enseñanza y de aprendizaje para transformar positivamente el aprendizaje, fortalecer habilidades digitales y competencias específicas que conlleven a mejorar la calidad de vida en la población intervenida. Se investigarán alternativas de solución a través de la categorización de estrategias de enseñanza que vinculen desde el diseño instruccional las TEP y el aprendizaje ubicuo en procesos de enseñanza-aprendizaje orientado específicamente al desarrollo de las competencias ciudadanas según los estándares del Ministerio de Educación Nacional. Con esta investigación aplicada de enfoque mixto dirigida a estudiantes en instituciones de educación básica y media, se obtendrá información mediante grupos focales, pruebas pretest y postest, para diagnosticar el estado de las competencias ciudadanas, su desarrollo a partir de la vinculación de las TEP desde las ecologías del aprendizaje y la incidencia del diseño instruccional. De esta manera y alrededor de las competencias específicas, se busca aportar un diseño instruccional desde las ecologías de aprendizaje, que oriente nuevas posibilidades para fortalecer la práctica pedagógica con la incorporación de TEP a la enseñanza, capitalizar las habilidades digitales de los estudiantes y contribuir a la calidad de los procesos educativos.
- Dataset
- TCO analysisTCO analysis heat pumps
- Dataset
- JGRA_KNakazawa2024Data for K. Nakazawa et al. manuscript "On-ground Detection of An Upward Multi-pulse TGF Distant from an Ascending Stepped Leader".
- Dataset
- Dataset Jose Cardenas (Lúdicas para la innovación académica)Contienes la base de datos de artículos relacionados con la innovación académica y la inclusión de las lúdicas en procesos de enseñanza aprendizaje de temas relacionados con la ingeniería.
- Dataset
- Comparative small RNA sequencing reveals candidate functional miRNAs in nonketotic hyperglycinemiaNonketotic hyperglycinemia (NKH) is a rare autosomal recessive (AR) inherited disorder of amino acid metabolism known as glycine encephalopathy. Clinical manifestations arise as a result of enzyme deficiency involved in glycine degradation. Currently, there is no suitable treatment method available to change the prognosis of NKH; existing treatments aim to prevent and eliminate the accumulation of glycine in the body. MicroRNAs (miRNAs) are small non-coding RNAs that function as transcriptional and post-transcriptional regulators of gene expression. The growing significance of miRNAs in cellular mechanisms offers new horizons in deciphering the genotype-phenotype correlations in diseases, and assists in the early diagnosis, prognosis, and treatment options. Although their potential, the miRNAs involvement in NKH is yet to be elucidated. Here we report that comparative profiling of the small RNA sequencing data generated from diagnosed clinical samples. We conducted multi-step bioinformatics analysis to predict, annotate, and characterize candidate miRNAs for their cellular targets, associated pathways, and contribution to the disease mechanism. In our study, nine known miRNAs are identified to be associated with NKH using at least two different tools. Our study is the first to demonstrate altered miRNA profiles in cases where the expression of AMT and GLDC genes is reduced. We further demonstrated the alteration in miRNA levels in cases where the expression of AMT and GLDC genes is reduced. We hope that the candidate miRNAs could serve as a specific and robust biomarker for early diagnosis of NKH.
- Dataset
1
The Generalist Repository Ecosystem Initiative
Elsevier's Mendeley Data repository is a participating member of the National Institutes of Health (NIH) Office of Data Science Strategy (ODSS) GREI project. The GREI includes seven established generalist repositories funded by the NIH to work together to establish consistent metadata, develop use cases for data sharing, train and educate researchers on FAIR data and the importance of data sharing, and more.
Find out moreWhy use Mendeley Data?
Make your research data citable
Unique DOIs and easy-to-use citation tools make it easy to refer to your research data.
Share data privately or publicly
Securely share your data with colleagues and co-authors before publication.
Ensure long-term data storage
Your data is archived for as long as you need it by Data Archiving & Networked Services.
Keep access to all versions
Mendeley Data supports versioning, making longitudinal studies easier.
The Mendeley Data communal data repository is powered by Digital Commons Data.
Digital Commons Data provides everything that your institution will need to launch and maintain a successful Research Data Management program at scale.
Find out more