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Abstract—In many delay-tolerant applications, information
is opportunistically exchanged between mobile devices that en-
counter each other. In order to affect such information exchange,
mobile devices must have knowledge of other devices in their
vicinity. We consider scenarios in which there is no infrastructure
and devices must probe their environment to discover other
devices. This can be an extremely energy-consuming process
and highlights the need for energy-conscious contact-probing
mechanisms. If devices probe very infrequently, they might miss
many of their contacts. On the other hand, frequent contact
probing might be energy inefficient. In this paper, we investigate
the tradeoff between the probability of missing a contact and the
contact-probing frequency. First, via theoretical analysis, we char-
acterize the tradeoff between the probability of a missed contact
and the contact-probing interval for stationary processes. Next,
for time-varying contact arrival rates, we provide an optimization
framework to compute the optimal contact-probing interval as a
function of the arrival rate. We characterize real-world contact
patterns via Bluetooth phone contact-logging experiments and
show that the contact arrival process is self-similar. We design
STAR, a contact-probing algorithm that adapts to the contact
arrival process. Instead of using constant probing intervals,
STAR dynamically chooses the probing interval using both the
short-term contact history and the long-term history based on
time of day information. Via trace-driven simulations on our
experimental data, we demonstrate that STAR requires three
to five times less energy for device discovery than a constant
contact-probing interval scheme.

Index Terms—Bluetooth, delay-tolerant networking (DTN), en-
ergy efficiency.

I. INTRODUCTION

S INCE its inception, the goal of networking research has
been to provide instant, anytime, anywhere access to in-

formation. However, in recent times, research interest has been
piqued by a new class of applications that are tolerant to delay.
In several of these applications, information is exchanged op-
portunistically between devices when they are within communi-
cation range of each other. In other words, information transport
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is governed by the mobility of information carriers and their un-
derlying contact patterns.

The notion of delay tolerance is useful in a variety of sce-
narios. One compelling application is providing connectivity
and network services during disasters and in rural environments,
where network infrastructure is minimal or nonexistent. An-
other example comes from software developers who are devel-
oping dating applications for mobile phones. The profile of an
ideal partner is entered into a Bluetooth-based mobile phone,
which alerts the user whenever a matching profile is detected in
the vicinity (e.g., www.bedd.com).

Current research and development efforts for delay-tolerant
applications fall broadly into two categories: delay-tolerant
networking (DTN) [2] and delay-tolerant databases (DTD).
For DTN applications, the goal is to enable communication
between specific source–destination pairs in the network.
Research in this area has involved studying algorithmic issues
such as routing in networks [3], fundamental issues such as
scaling laws [4], and performance bounds of routing algorithms
[5] based on real-world contact patterns.

DTD applications have been driven by the observation that
mobile devices are becoming increasingly powerful in terms
of computation and storage and have multiple radio interfaces
such as Bluetooth, 3G, WiFi, etc. [6]. An effort is also being
made by phone manufacturers to embed sensors in these phones
to acquire and store personal information (health-related) and
for environmental monitoring [7]. As a consequence, these de-
vices store large volumes of digital information such as songs,
photographs, and sensory data and constitute a distributed ge-
ographic database. The dating application stated earlier is an
example of a DTD application. The research community has in-
vestigated opportunistic query propagation and data aggregation
algorithms, based on device proximity, in [6] and [8]–[10].

For both DTN and DTD applications, the common funda-
mental primitive is the opportunistic exchange of information
between mobile devices when they are in communication range
of each other. In order to enable such exchanges, devices will
have to constantly probe the environment to discover other de-
vices in the vicinity. Not surprisingly, device discovery1 is an
extremely energy-consuming process. To understand this better,
we made measurements on a Nokia 6600 mobile phone. The
current drawn was: 1) 38.61 mA for Bluetooth device discovery;
2) 9.33 mA for enabling the device to be discoverable; 3) 51.47
mA for Bluetooth data transfer; and 4) 38.68 mA for making a
phone call. In other words, the device discovery process is as
energy-intensive as making a phone call.

Our measurements clearly motivate the need for energy-con-
scious device-discovery algorithms. Although the measure-
ments in this paper are based on Bluetooth devices, our

1We use device discovery and contact probing interchangeably in this paper.
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device-discovery model can be used in other protocols, such
as 802.11 or UWB. As there are no centralized coordinators
in DTNs, it is hard to synchronize devices in the network, and
devices normally do not have information on which channel
should be used in device discovery. In device-discovery proto-
cols used in DTN, a mobile may need to send multiple packets
over a number of channels in order to scan for devices around
it. Therefore, the high probing energy consumption could be a
common problem in delay-tolerant networks.

One strategy to conserve energy is to increase the time be-
tween subsequent device discoveries. The consequence of this
is that devices in the vicinity may go undiscovered, and opportu-
nities to exchange data are lost. This points to a tradeoff between
energy and missed opportunities. For strategies that use a con-
stant device-discovery interval, the larger the probing interval,
the larger the missed opportunities and vice-versa. However, in
stochastic environments, device discovery should be done adap-
tively by choosing the probing interval based on the state of the
environment. For example, late at night at home, device dis-
covery can occur at large intervals without missing many con-
tacts, while on the subway to work, device discovery should be
done more frequently to catch the myriad of new contacts.

In this paper, we investigate the design of energy-conscious,
adaptive contact-probing algorithms that trade off energy con-
sumption and the probability of missing a contact. Specifically,
we make the following contributions.

A. Theoretical Framework

We first develop a theoretical framework to characterize the
tradeoff between the average contact-probing interval and the
contact missing probability . We show that if the contact
duration distribution is independent and identically distributed
(i.i.d.) and the contact arrival rate is constant, then for a given
missing probability constraint, the optimal contact-probing in-
terval is 1) constant and 2) depends only on contact duration dis-
tribution, independent of the contact arrival distribution. When
the contact arrival rate is time varying, the optimal contact-
probing interval is a function of the contact arrival rate. We pro-
vide an optimization framework to compute the optimal con-
tact-probing interval as a function of the contact arrival rate.
This theoretical base provides us with bounds on performance
and also aids in the investigation and design of adaptive con-
tact-probing algorithms. See Sections II and III.

B. Real-World Contact Pattern Experiments and Analysis

The theoretical development above depends on the contact
pattern statistics. To understand real-world contact patterns, we
conducted a large-scale data logging experiment [11]. Nine vol-
unteers were given Bluetooth devices equipped with a software
program that probed for contacts every 30 s and logged informa-
tion about other Bluetooth devices that came within range. Our
database contains the largest number of unique devices discov-
ered, compared to existing work [12]–[14]. We conducted rig-
orous analysis on the data. We confirmed that the contact dura-
tion is Pareto-distributed. Moreover, our data analysis indicates
weak correlations in contact patterns at 24-h time lags. Finally,
we show that the contact process is self-similar with a Hurst pa-
rameter of 0.76. See Section IV.

C. Algorithm Design and Validation

Finally, using insights gleaned from the theory and the data
analysis, we investigate adaptive contact-probing algorithms.
We design STAR, an algorithm that strives to estimate the ar-
rival rate and adapt the contact-probing interval based on this
estimate. We consider using several estimation methods in con-
junction with STAR and compare them using trace-driven simu-
lations. We show that a simple weighted average of previous ar-
rival rate estimates (STAR-PTS) works well and has 1/3 the en-
ergy consumption of the constant nonadaptive contact-probing
algorithm for a missing probability of 0.2. The minimum mean
squared error estimator approach (STAR-MMSE) is even better
and has 1/5 the energy consumption of the nonadaptive scheme.
See Sections V and VI.

II. MODELING THE CONTACT PROCESS

A. System Model and Assumptions

Assume that every device probes the environment governed
by some contact-probing algorithm. When a device A probes its
environment, all devices that hear the probe respond to device
A with some information (e.g., identity, services available, etc.).
Based on this information, A may choose to exchange data with
some of its neighbors. We define two device,s A and B, to be in
contact if they are within communication range of each other2.
The duration over which devices A and B are continuously in
contact is called the contact duration for that contact. If neither
device probes its environment during the contact duration, then
we have a missed contact. We further assume, for the sake of
analysis, that each probe is an impulse and does not consume
any time.

We assume that each probe consumes the same amount of
energy of . When the average contact-probing interval is ,
the energy consumption rate of the device will be . With the
same number of missed contacts, the algorithm that uses fewer
probes (longer average probing interval) will be more energy
efficient.

For a given device, we assume that the contact durations
are i.i.d. random variables with cumulative distribution

function (cdf) of and mean .
We assume that the contact arrival process is stationary. The

contact arrival process is characterized by the intercontact time
, defined as the time between the th and -th contacts.

The stationary assumption is that the sequence of intercontact
times is a wide-sense stationary process; i.e., the have
a constant mean of . We relax this assumption
and deal with nonstationary contact arrival processes in the next
section.

See Fig. 1 for an illustration of contact duration and
intercontact time .

B. Missing Probability

The missing probability is the probability a contact that
occurs is not detected. For the following analysis, we assume

2We do not assume a perfect communication region here. The imperfectness
in communication is embedded in our contact data gathering process that uses
real devices.
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Fig. 1. Illustrating the contacts for a specific user probing at a constant in-
terval .

that for a device A, a contact B is missed if B is not discovered
by A’s probes. We will relax this later to compute the missing
probability when neither A nor B’s probes discover each other.
Let us first consider the simplest possible contact strategy, where
each device probes for contacts at constant intervals of (see
Fig. 1).

We first consider the case when contact probes are reliable;
i.e., every probe can successfully detect all contacts around the
device. If , the contact will never be missed. Consider a
contact that is initiated at time , where

is an arbitrarily small value so that the time interval can be
treated as a time point. This contact will not be detected by the
mobile at time if , which happens with prob-
ability of . By Blackwell’s Theorem in renewal theory
[15], when the contact process is a general renewal process with
a nonlattice distribution function, we can calculate the long-term
average missing probability given the probing interval of as

(1)

Note that we do not need to restrict the intercontact time distri-
bution to be memoryless to perform the averaging procedure in
(1).

Consider the mean value of given that , which
is . Then,

can be expressed as

(2)

For a constant contact-probing interval of , any contact
with duration larger than will always be detected. Equation
(2) shows that for a contact with duration shorter than ,
the expected probability that the contact will be missed is

. Therefore, only contacts with duration smaller
than will be missed. If all the contacts with have
zero contact duration, then will be exactly .

The key observation here is that for a constant probing
scheme, if the contact durations are i.i.d. and the intercontact
times are stationary, then the missing probability depends
only on the distribution of the contact duration and the con-
tact-probing interval . It is independent of the intercontact
time distribution.

In real networks, contact probes are unreliable due to the
nondeterministic nature of wireless channel. Consider the case
where a probe can miss a present contact with probability of .

The overall missing probability can be derived in a similar
way (see the Appendix). Similar to the reliable probes case, the
missing probability for unreliable probes is also independent of
the intercontact time distribution. In the rest of this paper, we
only consider cases where all contact probes are reliable.

C. Optimal Contact-Probing Scheme

We will now prove the following theorem about the constant
contact-probing scheme described earlier.

Theorem 1: Consider a contact process for which the con-
tact durations are i.i.d and the distribution of intercontact times
is stationary, with an expected intercontact time of . Consider
the class of contact-probing strategies that do not exploit knowl-
edge of the contact process. Then, among all contact-probing
strategies with the same average contact-probing interval, the
strategy that probes at constant intervals achieves the minimum
missing probability.

Proof: Consider a large interval of time . Let us con-
sider all strategies that probe the environment times in this
interval. As shown previously, for the strategy that probes at
constant intervals , the missing probability over dura-
tion is . Assume that an arbi-
trary scheme probes times at . Define
and . Then, we have intervals of

. Since the scheme se-
lects probe time without knowledge of the contact process, the
expected number of missed contacts in an interval of
is , for . All the contacts that occur in

will be missed. The expected missing probability is

(3)

since the expected number of contacts arriving in duration is
. For , we have

(4)

Similarly, when we have

(5)

We also have

(6)
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Putting all these into (3), we have

(7)

D. Tradeoffs in Energy Efficiency and

Having established that a constant contact-probing interval is
optimal under certain assumptions, we now explore the tradeoff
between energy efficiency and the missing probability. When
contact durations are distributed according to a given distribu-
tion, we can analytically determine the relationship between
and according to (1). Here, we demonstrate the rela-
tionship between energy efficiency and missing probability for
several typical distributions. In Section IV, we will focus on dis-
tributions obtained from real-world Bluetooth contact logs.

1) Exponential Distribution: When the contact duration is
exponentially distributed, we have . Using
(1), we have

(8)

2) Uniform Distribution: The uniform distribution is

(9)

Additionally, we have

(10)

3) Pareto Distribution: We have

(11)

In this case, we have when . The mean
is unbounded when . Using (1), we have

(12)

Fig. 2 shows the tradeoff between energy consumption
and missing probability for these distributions. The energy
consumption is computed as , where we set and
normalize the energy consumption rate by the average contact
duration of . We see that for exponential and uniform distribu-
tions, the missing probability of 5%–10% is near the knee of the
curve that is a good tradeoff point between energy consump-
tion and missing probability. This means the contact-probing
interval should be around 1/6 to 1/3 of the average contact
duration. However, for Pareto distribution, the contact-probing

Fig. 2. Tradeoff between energy consumption and missing probability on dif-
ferent distributions.

interval should be around to achieve a near-zero missing
probability. In other words, for a constant arrival rate and a
Pareto contact duration distribution, it is difficult to tradeoff
between and .

E. Double Detection

As we stated earlier, a contact between device A and B is
missed only if neither device probes the environment during the
contact. Consider the case when two users A and B are inde-
pendently probing the environment. Assume that both users are
using the same constant contact-probing interval of . Then,
the probability that A does not discover B is . How-
ever, the probability that neither A nor B discovers the other
during a contact is much higher than , even though
their contact-probing processes are independent. Suppose one
user probes at times of , and the other probes at

. Without loss of generality, we can
assume that . Then, the probability that during a con-
tact, neither user discovers the other is given by

When , has a minimum value of
, and has maximum value of

when . Since the two users are probing independently,
is uniformly distributed in , and the average missing

probability is

(13)
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For example, when the contact duration is uniformly dis-
tributed as shown in (9), we have ,
which is smaller than the single user missing probability only by
a constant factor.

III. NONSTATIONARY INTERCONTACT TIMES

Until now, we have made the simplifying assumption that the
intercontact times are stationary. This assumption is clearly not
true. For example, one would expect the intercontact time pat-
terns late at night to differ significantly from the intercontact
time distribution during lunch hours or peak traffic hours. This
implies that the optimal contact-probing interval will vary with
time. In the following sections, we study the contact arrival pro-
cesses where the average contact arrival rate varies with time. In
this case, we assume that the contact arrival rate is constant over
some short time period of duration . As before, we assume the
contact durations are i.i.d.. This assumption will be justified in
Section VI.

A. Problem Formulation

We divide the time to slots with equal duration of . We de-
note the average contact arrival rate in the th time slot as .

We proved in Theorem 1 that using a constant con-
tact-probing interval of is optimal during the th time
slot. In this case, the expected number of contacts captured
during time period will be . However, to
minimize the overall contact-missing probability, the optimal
probing intervals could be different for different time slots
that have a different arrival rate of . Intuitively, more energy
should be spent in time slots with high arrival rates to capture
more contacts so that the overall contact missing probability
can be minimized.

Consider the problem of maximizing the number of contacts
captured over time slots, given a constraint on the total en-
ergy used in the time slots. This problem is equivalent to min-
imizing the contact-missing probability over the time slots.
As each probe consumes equal energy, the constraint on total
energy consumption can be converted to a constraint of total
number of probes used in the time slots. Assume that the de-
vice can take probes during the time slots. We can then
formulate the following optimization problem to find the op-
timal probing interval for each time slot:

(14)

Defining variable as and ,
the optimization in (14) can be recast as

(15)

It can be verified that is always a concave and increasing
function for the three distributions we discussed above. Using
the Karush–Kuhn–Tucker (KKT) conditions [16], we have

(16)

for all nonzero optimal solutions . Note that when
. The energy cost is a constant that can be obtained

by solving the dual of (15). The optimal can then be solved
from

(17)

for a given . In practice, we can set the parameter instead
of to achieve a certain tradeoff point between energy and
missing probability. A larger value of means energy is more
precious (smaller ) and less energy will be used in the time
slots. Consequently, the overall contact-missing probability will
be larger. Once the parameter is set, we can use (17) to calcu-
late the optimal based on the estimate of for a time slot .
This solution minimizes the missing probability over all time,
subject to energy constraints, which are determined by the en-
ergy cost .

Example 1: Let the contact duration distribution be uniform,
h, and is the number of times the device can probe

in 24 h. Then, the optimal contact-probing interval for the
arrival rate is

(18)

by (17). If the are all equal, then clearly . There-
fore, and when .

B. Discussion

In Section II, we show that a constant probing rate is optimal
for stationary processes, and the optimal tradeoff points can
be derived from (1). In this section, we show that the average
missing probability can be further reduced when the contact
arrival rate is time-varying. When the contact arrival rates
are different in different time slots, we can use adaptive contact
probing to redistribute the limited probing energy according
to the contact arrival rate. For a time slot with high contact
arrival rate, we can increase the probing rate and reduce the
missing probability so that most contacts arriving in this time
slot can be captured. When the contact arrival rate is low, the
contact-probing rate can be reduced since the number of missed
contacts will be small for a small , even if

is quite high. In this way, the overall missing probability

can be minimized. However, the missing

probability for time slots with low arrival rates could be very
high in this case.

We now make two observations regarding the the optimiza-
tion in (14). First, when the contact arrival rates are equal for all
time slots, it is not necessary to use different probing intervals
in different time slots, and a constant probing rate is optimal.
In this scenario, the solution to (14) reduces to the solution for
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Fig. 3. Optimal missing probability for time-varying arrival process.

stationary intercontact times, derived in Section II. This is illus-
trated in Example 1.

Second, with time-varying contact arrival rates, the optimiza-
tion algorithm should have enough information to predict the
arrival rate . For a fixed value of , the algorithm needs the
arrival rate in the next time slot to calculate the optimal probing
interval from (17). If the algorithm does not correctly predict
the contact arrival rate in the next slot, the probing rate cal-
culated based on the predicted will not be optimal.

We use an example to demonstrate the performance of adap-
tive contact probing in time-varying processes. Fig. 3 shows the
performance for time-varying processes with different variances
in contact arrival rates . In this example, the contact duration
is distributed as a Pareto distribution with . For contact ar-
rival rates , we assume they are random variables distributed
according to a truncated Gaussian distribution.3 We vary the
mean and variance of the Gaussian distribution to change the
variance of the contact arrival rate while keeping the mean ar-
rival rate to 1. To expand the curve, we change the -axis to nor-
malized probing interval instead of the energy consumption
rate as in Fig. 2. In Fig. 3, a smaller value of for
the same normalized probing interval represents better perfor-
mance. Compared to the constant probing interval scheme used
for stationary processes, we see that adaptive contact-probing
scheme performs better when the variance of contact arrival rate
increases. For a missing probability of 20%, the average con-
tact-probing interval for processes with arrival rate variance of
10 is about 12, which is nearly six times longer than the probing
interval used by the constant probing interval scheme. As we as-
sume each probe uses the same amount of energy, the adaptive
contact-probing scheme uses only 1/6 energy compared to the
constant probing interval scheme.

In Fig. 3, we assume that there are no prediction errors in
. Fig. 4 demonstrates the performance of adaptive probing

scheme under different prediction mean squared errors (MSEs).
We see that when the prediction error increases, the performance
becomes worse. However, the performance is still much better

3Note that the arrival rate cannot be negative; all negative arrival rates are set
to zero.

Fig. 4. Missing probability for time-varying arrival process ( ) with
different prediction mean squared errors.

than the constant probing interval scheme, even for large pre-
diction errors. This suggests that we can use the adaptive con-
tact-probing algorithm even when we cannot accurately predict
the arrival rate.

IV. HUMAN CONTACT PROCESSES

In Sections II and III, we derived analytical models for gen-
eral contact processes, which can be applied to different sce-
narios, such as contacts between humans or between mobile
robots. In the next three sections, we mainly focus on the human
contact process based on a set of Bluetooth contact logging ex-
periments.

A. Data Collection Experiments

In order to characterize contact distributions, we handed
Bluetooth phones to nine volunteers. We also installed static
Bluetooth probes in high-traffic areas. The phones had a J2ME
program running on them that initiated a Bluetooth device
discovery every 30 s. If other Bluetooth devices are discovered
in the vicinity, then the time of contact and Bluetooth address
were captured. Since the probing software could terminate due
to lack of energy, crashes, etc., we captured the start time and
end time of each probing session. This allowed us to capture
contact duration and intercontact time distributions accurately.
Overall, we did 424 man days of data collection, and 12 332
unique devices were discovered in our experiment. To the best
of our knowledge, this is the largest volume of unique devices
discovered compared to other comparable studies.4 For the
details of the experiment, please refer to [11].

For the nine volunteers, we have the complete contact log
over the experiment period. Our analysis and simulations are
based on the contact patterns of these nine volunteers. Each
contiguous set of scans during which a device is discovered is
counted as a contact. Assume that a device (say D) is discovered
in contiguous scans. Then, the duration of the contact with D
is the difference between the time of D’s discovery in the th

4In the Haggle [14] studies, a maximum of 41 volunteers probing at 120-s
intervals discovered 200 unique devices over five days. In the Serendipity [13]
study, 100 volunteers probing at 5-min intervals discovered 2798 unique devices
over a nine-month period.
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Fig. 5. Contact duration distribution.

scan and the first scan. If a device is only detected in one scan,
we treat the duration of contact as 30 s.

B. Distribution of Contact Duration

We first look at contact duration distribution of the Bluetooth
contact data. Fig. 5 plots the complementary cumulative distri-
bution function (ccdf) curve, which is (probability
of ) in log-log scale. We see that the contact duration
distribution follows a power law (Pareto distribution). By curve
fitting, we can estimate with s
and . Although the mean for Pareto distribution with

is unbounded, the average contact duration is around
370 s in our case. This is because the probability of long contacts
decreases rapidly when contact duration is longer than 2 h, and
in our experiments, there are no contacts lasting longer than 5 h.
The fact that the contact duration distribution follows a power
law has also been verified by other studies (see [14] and refer-
ences therein).

The fact that the contact duration distribution is Pareto-dis-
tributed is a pessimistic result. For the Pareto distribution, be-
yond a small threshold probing interval, the missing probability
rises sharply from close to zero as shown in Fig. 2. Fortunately,
as a consequence of human mobility, contact arrival rates are
time-varying. As we show in later sections, this can be exploited
to achieve significant energy savings.

C. Correlation Analysis

In order to see if there is any predictability in the contact
patterns, which will aid us in designing good adaptive contact-
probing mechanisms, we investigate the autocorrelation of the
contact processes.

Here, we use the autocorrelation function [17]: Define an ag-
gregated measurement series as the average of certain mea-
surements, over a time window of . We calculate
the autocorrelation of the measurement as

. In this paper, we consider the measurement of three
types:

• Contact duration: The average contact duration for the
contacts occurring in a time window.

Fig. 6. Normalized correlation of contact duration and contact number over
short time period ( min).

• Number of new contacts: The number of newly arrived con-
tacts during the time window of . This mea-
surement determines the correlation of intercontact time.

• Number of contacts: The number of contacts the device ob-
serves during the time window, including those that arrived
in previous windows.

As shown in Fig. 6, the number of contacts and number of
new contacts are highly correlated over short periods, and the
correlation dropped faster when the correlation period is longer
than 60 min. The contact duration is less correlated. The high
correlation in the number of new contacts makes it possible to
predict the contact arrival rate in future time slots, which will be
discussed in Section V.

D. Correlation at Large Time Scales

The contact processes are highly related to human behavior.
Therefore, we expect to see diurnal variations in the contact pat-
terns. Also, since most people are creatures of habit, one might
expect to see periodicity in the contact processes over daily or
weekly time scales. Fig. 7 shows the correlation over long time
periods. We clearly see the diurnal variations. The autocorrela-
tion drops to zero over 12 h and had a period of 24 h. Finally,
we do not see any significant correlation increase over a 168-h
(one-week) period.

E. Self-Similar Nature

The slowly decreasing slope of the autocorrelation for the
number of new contacts hints that the contact arrival process
is self-similar [18], [19]. We test for self-similarity over four
time scales of 10, 100, 1000, and 10 000 minutes. We use the

measurement to verify this conjecture. Let denote the
number of new contacts seen in 1 min and be
the aggregated number of new contacts in minutes. Define
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Fig. 7. Normalized correlation of contact duration and contact number over
long time periods ( min).

Fig. 8. The statistic of the contact arrival process.

and

If , with Hurst parameter ,
then the process is self-similar [19]. From Fig. 8, we see that our
process has a Hurst parameter close to 0.76.

This implies that the contact arrivals are not only long-range
dependent but also bursty. An intuitive model for this is that ar-
rivals follow an ON–OFF process where the ON and OFF durations
have memory. This can potentially be exploited to achieve en-
ergy savings.

F. Mean and Variance of Contact Arrival Rate

As discussed in Section III, we can adapt the probing interval
according to the contact arrival rate when the arrival rate is time-
varying. Table I shows the mean and variance of the contact
arrival rates at different time scales. Due to the self-similarity of

TABLE I
CONTACT ARRIVAL RATE IN DIFFERENT TIME SCALES.

Fig. 9. Contact arrival rate and its variance over time of day.

the process, the variance increases faster than when the
time scale increases. The normalized variance of the arrival
rate is the variance divided by the mean arrival rate. As shown
in Fig. 3, a larger normalized variance of the arrival rate leads to
potentially better performance. In our human contact process,
the normalized variance of the contact process is larger than 10
when the time slot size is smaller than 1 h. Therefore, adaptive
contact probing should perform better than the lowest curve in
Fig. 3 when the arrival rate in the next hour is known.

G. Contact Arrival Rate versus Time of Day

The contact arrival rate distribution varies with time of day.
In Fig. 9, we plot the average rate at which new contacts are seen
at different times of the day. The contact arrival rate during the
early morning is quite small. This implies that we can use longer
contact-probing intervals during the early morning to save en-
ergy as described in Section III. The variance of the contact ar-
rival rate over different days is also plotted in Fig. 9. We see
that the variance is quite large. This shows the contact arrival
rate at the same hour in different days may vary drastically. Al-
though the arrival rates exhibit some patterns in a 24-h period,
we cannot simply use the time of day to infer the arrival rate due
to the large variance at the same time of day.

V. ADAPTIVE PROBING ALGORITHMS

In Section IV, we saw that human contact patterns have time-
varying contact arrival rates when the time slot size is smaller
than 1 h. Also, the contact arrival rates have high short-term cor-
relation and exhibit a 24-h periodic pattern. These observations
suggest that the human contact process is both time-varying and
predictable. We exploit these characteristics to design an effi-
cient adaptive contact-probing scheme in this section.
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Assumptions and Methodology

In this section, we investigate the design of adaptive contact-
probing algorithms that can achieve a good tradeoff between
the probability of a missed contact and energy consumption.
As described in Section II-A, the energy consumption rate is
inversely proportional to the average probing interval; e.g., a
device with average probing interval of 30 s will consume two
times more energy than a device with average probing interval
of 60 s.

From our earlier analysis in Section III, we see that in order to
compute the optimal contact-probing interval, we require , the
power law exponent for the contact duration distribution and the
arrival rate. We contend that variations in the contact duration
distribution, if any, will occur over large time scales. It is reason-
able to hypothesize that contact duration distribution will always
follow a power law but with different decay coefficients over
large time scales. This is validated by the fact that experiments
at widely differing geographical locations have all displayed a
power-law contact duration distribution but with different decay
coefficients [14], [12], [20]. For the rest of this section, we as-
sume that the contact duration distribution is known and focus
on the problem of adapting the contact-probing interval to vari-
ations in arrival rate. This assumption will be further justified in
Section VI.

As shown in Section III, we can find the optimal value of the
contact-probing interval by solving (17) when the arrival rate
is known. Since our contact duration is Pareto-distributed, we
have

(19)

where and s for our logging data as shown
in Section IV. With a different energy cost of , we can achieve
different tradeoff points between and . Fig. 10 shows
the optimal contact-probing interval for different arrival rates.
We see that when the arrival rate is high, the optimal quickly
converges to . This means we can tolerate a certain amount
of estimation error in when the contact arrival rate is high.
However, when the contact rate is small, we need to estimate
it accurately so that we will not underestimate the rate and use
extremely long contact-probing intervals.

A. Contact Arrival Rate Estimation

Based on our analysis, we propose a class of adaptive con-
tact-probing schemes based on short-term arrival rate estima-
tion (STAR). STAR updates the estimate of the contact arrival
rate periodically using a time slot length of . The estimation
is based on information available to the probing devices, such
as time of day, statistics of historical arrival rates, and observed
arrival rates in previous time slots. STAR then sets the probing
interval for next probing according to the optimal calculated
from (19) using the estimated arrival rate .

We will consider the following estimation methods for STAR
and compare their performance in Section VI.

1) STAR-TOD: The STAR-time of day (STAR-TOD) scheme
is motivated by two facts. First, people are creatures of habit.
Second, Fig. 7 shows that the auto-correlation peaks at 24-h
lags. These suggest that it may be possible to estimate the arrival
rate using the time-of-day information.

Fig. 10. Relationship between optimal contact-probing interval and the arrival
rate.

STAR-TOD first collects the historical average arrival rate
at hour (e.g., is the arrival rate averaged over dif-

ferent days for the same time period of 1200–1259 h). Then,
STAR-TOD reads the current hour from the system clock of
the device and sets

(20)

In other words, STAR-TOD implicitly assumes the contact ar-
rival rate is highly correlated to time of day, and the arrival rate
will not vary dramatically in different days.

2) STAR-PTS: The STAR-previous time slot (STAR-PTS)
scheme uses the detected arrival rate in the previous time slots
as the estimation . More specifically, it sets

(21)

where is the nearest time slot with nonzero arrival rate. If the
arrival rate in the last time slot is nonzero, (21) will set the
estimate to .

Note that the historical arrival rate used in STAR-PTS
comes from the arrival rate observed by the device. When
is large, the missing probability will be quite high, and could
be inaccurate. To compensate this effect, we set as

(22)

where is the number of new contacts detected by the device
in time slot .

STAR-PTS uses only the short-term history of the arrival
process. This scheme may converge to certain nonoptimal op-
erating points for human contact process. For example, after a
night where no contacts arrive, the will converge to zero, and
the could be very long. In the next morning, it will be difficult
to detect new contacts since the missing probability is high due
to the large . Therefore, STAR-PTS will keep on assuming

is zero until it detects some contact by chance. To reduce this
long “warm-up time” of STAR-PTS in the morning, we set
as

(23)
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where is the weight for different estimations. In (23), the
time-of-day information is combined with estimation from
short-term history to prevent the algorithm from getting stuck
at the nonoptimal operating point. This approach combines
both the long-term history of TOD and the short-term history.
The long-term history can serve as a baseline of the everyday
routine of the user. The short-term history will track dynamic
changes in user behavior.

3) STAR-LMMSE: STAR linear minimum mean-squared
error estimation (STAR-LMMSE) uses more short-term corre-
lation information than STAR-PTS. It sets the estimation of the
arrival rate in the next time slot to

(24)

Suppose the auto-correlation of arrival rates is

(25)

We define

...
. . .

. . .
. . .

...
(26)

and

(27)

Then setting

(28)

will minimize the MSE of the linear estimator [21], and the cor-
responding MSE is given by [21]

(29)

Note that STAR-LMMSE only uses short-term history and
may have the same “warm-up” problem as STAR-PTS. In this
case, we can use the same weighted average method as dis-
cussed in STAR-PTS.

4) STAR-MMSE: We can also use the general nonlinear
MMSE scheme to estimate the arrival rate by setting [21]

(30)

where is the time of day as in STAR-TOD. In (30), and
can only take integer values. Therefore, the algorithm

needs to store the corresponding to different combinations
of and s. As we can see from Fig. 10, the curve becomes
flat when is large. Therefore, the algorithm can tolerate large
estimation errors when is large. In practice, we can “quan-
tize” large values of ’s so that the number of combinations
of and ’s can be reduced.

The STAR-MMSE algorithm uses both the short-term his-
tory and time-of-day information. However, it requires a large

amount of memory to store the corresponding to different
combinations of and ’s. Also, it needs a large amount
of training data for calculating the conditional mean. Therefore,
it has a much higher complexity compared to STAR-LMMSE
and STAR-PTS. Though it may not be optimal in terms of min-
imizing missing probability, STAR-MMSE can serve as a per-
formance benchmark for estimation-based contact-probing al-
gorithms.

5) STAR-Genie: STAR-Genie is a noncausal algorithm that
assumes that we know the actual arrival rate in the next time
slot. It serves as a lower bound for the missing probability of all
STAR-based algorithms.

VI. SIMULATIONS

A. Simulation Models

We now compare the performance of different adaptive con-
tact-probing algorithms by running trace-driven simulations on
the data that we have collected.

When calculating the missing probability, we use the Blue-
tooth contact logs, which are based on a 30-s contact-probing
interval as the baseline. We apply different adaptive contact-
probing algorithms to filter the contact log data. Assume that
a device D has been logged in our experiments from time to

. Then, for a specific adaptive contact-probing algorithm,
we say that the contact has been missed if the algorithm does not
initiate any probe in the interval . The contact missing
probability is computed as the ratio of the number of contacts
missed by the adaptive contact-probing algorithm to the total
number of contacts made in our data logging experiments.

B. Verification of Analysis

First, we verify that the relationship between and de-
rived in (12) is correct for a constant contact-probing interval .
From our logging data, we have computed the decay exponent
of the contact distribution . Since the granularity of
our logging experiments is over 30-s intervals, we set .
The comparison between the trace-driven simulations and the
analytical results are shown in Fig. 11. We see that the results
of the simulation are quite close to the theoretical results. Since
the constant contact-probing interval algorithm does not adapt
to the changes in the contact arrival rate, we will use this as the
lower bound for the average contact-probing interval to achieve
a given missing probability.

C. Performance Comparison

We use data-driven simulations to compare the performance
of different adaptive probing algorithms. In the simulation, we
use a time slot size of 10 min based on the correlation of human
contacts shown in Fig. 6. Since the correlation drops below 0.1
after 2 h, we use the arrival rate in the previous 2 h (i.e., )
to estimate in STAR-LMMSE. For STAR-MMSE, we use

due to the large storage space and training data size re-
quired by the algorithm. Additionally, we assume STAR-MMSE
has perfect knowledge of the arrival rates in the previous time
slots. In this sense, it is a lower bound to the performance of the
algorithm that uses the detected arrivals only.

Fig. 12 shows the relationship between missing probability
and the long-term average probing interval for different algo-
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Fig. 11. Comparing the missing probability of the Bluetooth log to theory re-
sults.

Fig. 12. Improving energy efficiency by adapting to the contact arrival rate.

rithms. The energy consumption rate of the algorithms can be
calculated through , where is the energy used in each
probe and is the average probing interval.5 The curve for
STAR-Genie provides performance bounds for STAR-based
adaptive contact-probing algorithms. STAR-Genie is a non-
causal algorithm that has accurate future contact arrival rates. In
other words, STAR-Genie shows the optimal tradeoff between
energy and missing probability when there is no estimation
error. Comparing the performance of STAR-Genie to the results
in Fig. 3, we see that the missing probability of STAR-Genie
is lower. This can be explained by noting that human contact
processes have large variance ( ) in short-term contact
arrival rates that can be exploited by STAR. Since STAR-Genie
is noncausal, an implementable contact-probing algorithm
needs to estimate the arrival rate.

STAR-TOD estimates the arrival rate based on the
time-of-day information. The performance of STAR-TOD
is slightly better than constant probing interval algorithms and
not as good as other estimation methods that use short-term
arrival history. This observation suggests that the time-of-day

5In our Bluetooth experiments, the value of is around 2.1 J as the Bluetooth
device-discovery process takes 10–20 s.

information is less important than short-term human mobility
behavior in predicting contact arrival rates.

The performance of STAR-PTS and STAR-LMMSE is much
better. For a missing probability of 20%, the probing interval
for STAR-PTS and STAR-LMMSE is about 300 s, which is
more than three times the probing interval of the constant
probing interval algorithm. In other words, STAR-PTS and
STAR-LMMSE use only 1/3 the energy for contact probing
than constant probing interval schemes. Fig. 12 also shows that
the performances of STAR-PTS and STAR-LMMSE are nearly
the same. Compared to STAR-LMMSE, which estimates arrival
rates based on history of the past 12 time slots, STAR-PTS
only uses the nearest time slot in the estimation. The similar
performances of STAR-LMMSE and STAR-PTS suggest that
it may be good enough to use a lesser amount of history in the
arrival rate estimation. We take advantage of this to reduce the
complexity of STAR-MMSE.

The STAR-MMSE algorithm gives the best arrival rate esti-
mation that can be achieved with perfect knowledge of historical
arrival rates and the statistics of the contact patterns. The per-
formance of STAR-MMSE is better than STAR-LMMSE when
the average probing interval is large. For a missing probability of
20%, the probing interval of STAR-MMSE is over 1.5 times that
of STAR-LMMSE and five times that of the constant probing
scheme. However, the difference with STAR-LMMSE is negli-
gible when the probing interval is small. This could have sev-
eral explanations. First, STAR-LMMSE uses the detected ar-
rival rate, while the ideal STAR-MMSE uses the true arrival
rates in the estimation. Second, STAR-LMMSE only has the
correlation of arrival rates, while STAR-MMSE has detailed in-
formation on the conditional distribution of the arrival rates.
Third, STAR-LMMSE uses the time-of-day information in a
heuristic weighted averaging manner, while STAR-MMSE uses
the time-of-day information directly in the conditional mean es-
timator.

To further compare STAR-LMMSE and STAR-MMSE, we
use the true value of in the estimator of STAR-LMMSE.
The performance of STAR-LMMSE becomes better when the
probing interval is large, as seen in Fig. 13. This is because the
missing probability increases with the probing interval. When
the missing probability is large, the detected arrival rate used
in the estimation might be wrong. Consequently, the estimation
error will increase when wrong historical arrival rates are used
in estimation. Therefore, the performance of STAR-LMMSE
can be greatly improved with accurate historical information
when the probing interval is large. However, even with the ac-
tual historical arrival rates, the performance of STAR-LMMSE
still cannot be as good as STAR-MMSE. This may due to the
larger MSE of STAR-LMMSE. In our simulations, the MSE of
STAR-LMMSE with accurate history is 2.2943, while the MSE
of STAR-MMSE is 1.1280. Although STAR-MMSE gives the
best performance, it requires much more storage and training
data than STAR-LMMSE and STAR-PTS. Therefore, STAR-
LMMSE and STAR-PTS may be more appropriate for use in
mobile devices due to their simplicity.

D. Contact Duration Distribution

In our analysis in Section III, we assumed that the contact
duration is distributed according to the Pareto distributions with
different . In real contact processes, the probing algorithm
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Fig. 13. STAR-LMMSE with true historical arrival rate.

Fig. 14. STAR-LMMSE with different values.

may not have the accurate value of , which may also be
time-varying. We use different values in the STAR-LMMSE
to see whether it is sensitive to changes in the value of .
Fig. 14 shows the performance of STAR-LMMSE running
with changing from 0.5 to 1.5. Although our data has a
value of 0.846, changing the value of used in the algorithm
does not deteriorate the performance much. This shows that
the algorithm can work well with inaccurate or varying values
of .

VII. RELATED WORK

User mobility has a profound impact on the performance of
wireless networks. It has been shown that the capacity of wire-
less networks can be improved by random [4] or controlled [22]
mobility. The impact of user mobility in delay performance and
forwarding algorithm design has also been widely studied in
DTNs that use Bluetooth or WLAN [5], [20], [23], [24]. In this
paper, we study how user mobility will effect energy efficiency
in device discovery for delay-tolerant applications. Our protocol
provides an energy-conscious device-discovery service, which
can be used by many delay-tolerant applications.

In [25], the authors observe that existing mobility models are
too simple and do not accurately reflect user mobility. Based
on WLAN traces from various universities, they observe that

people have location preferences, which they visit periodically.
They then propose an empirical model to simulate user mobility
and validate it with WLAN data traces. The goal of this paper
is modeling user mobility and contact patterns and not to derive
contact-probing algorithms.

In [26], the authors again consider WLAN traces from the
University of California, San Diego, and Dartmouth College,
Hanover, MA. They analyze the statistics of interpair contact
time distribution, i.e., the time between subsequent meetings
of a specific pair of nodes. This metric is especially useful for
DTNs. They show that the interpair contact time distribution
is self-similar. In our work, we consider traces of a different
process, namely the set of contacts made as a user moves around.
This contact process is significantly different from that obtained
from WLAN traces. In WLAN traces, contacts between users
can be inferred only if two users associate with the same ac-
cess point at the same time. Contacts between users at locations
where there are no access points cannot be inferred. Also, we
characterize the intercontact time, i.e., the time between the dis-
covery of two new contacts. This metric is useful for both DTN
and DTD applications.

Energy-efficient Bluetooth device discovery has been studied
in [27] and [28]. However, they focus on the Bluetooth protocol
stack. Our algorithms are independent of the communication
protocol and adapt to user mobility to conserve energy for de-
vice discovery, making them applicable to many communication
systems.

Stochastic-event capturing schemes are studied in wireless
sensor networks [29]. In [29], optimal visiting routes are de-
vised for mobile sensors to capture events that randomly happen
in different points of interest. The event process is assumed to
be memoryless, and the parameters of the process are known
in advance. In our study, we investigate real-world contact pro-
cesses that are more complicated than memoryless arrival and
departure processes. The analysis in this paper can be applied to
a general renewal process, and our algorithm can dynamically
adapt to unknown parameters in the process.

VIII. REFLECTIONS

In this paper, we have identified that contact-probing mecha-
nisms play a critical role in certain mobile delay-tolerant appli-
cations. In these applications, mobile devices periodically probe
their environment for the presence of new contacts. We investi-
gated the design of energy-conscious, adaptive contact-probing
algorithms that trade off energy consumption and the probability
of missing a contact. Our key contributions were: 1) a theoretical
foundation that aids in the design of adaptive contact-probing
algorithms; 2) real-world experiments and characterization of
empirical contact patterns; and 3) design and validation of an
adaptive probing algorithm (called STAR) via trace-driven sim-
ulations. We demonstrate that STAR-PTS is three times more
energy-efficient than a naive constant-probing algorithm. We
also show STAR-MMSE, an ideal MMSE estimator-based al-
gorithm, could further improve the energy efficiency by 50%
compared to STAR-PTS. We now reflect on what we have done.

A. Exploiting Contact Bursts

Our empirical data show that the contact duration is Pareto-
distributed and the new contact arrivals are self-similar, meaning
they are bursty. Not surprisingly, it is advantageous to exploit
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the bursty nature to find a good tradeoff between missing prob-
ability and energy. This is what STAR implicitly does.

B. Other Heuristics

It is also possible to use other heuristics in adaptive con-
tact-probing algorithms. For example, we can use the additive
increase/multiplicative decrease (AIMD) algorithm in the adap-
tive contact-probing scheme. The AIMD algorithm additively
increases the probing interval when no new contacts are discov-
ered and decreases the probing interval by half when new con-
tacts are detected. Although AIMD changes the probing interval
according to the arrival rate as in STAR algorithm, the perfor-
mance of AIMD is not as good as STAR-PTS, as shown in [1].

C. Unknown Contact Duration Distribution

In contact processes other than human contacts, the intercon-
tact times could be stationary while the contact duration distri-
bution could change. In such processes, it is hard to calculate

from the observations of the device since we do not have
the information on contact duration distribution. It is shown in
[1] that we can use the percentage of short contacts, which are
contacts that are only detected by the device in one probing and
leave in the next probing, to bound the missing probability and
adapt to the unknown contact duration distribution.

D. Maintaining Short-Term

Even though STAR maintains a low missing probability
over large time scales, it can miss a relatively large fraction
of contacts in the short term. This is because we have so far
assumed that when a device is not probing, it has no way of
knowing if new contacts have arrived even if those new contacts
are probing. However, if devices are cognizant of the fact that
they have been probed, this information can clearly be used
to better adapt the probing interval and thereby reduce the
short term contact missing probability. We point out that our
analysis and simulations were motivated by current Bluetooth
implementations, which do not expose the fact that a device has
been probed, to the application. However, this constraint is not
fundamental and can easily be taken into account.

E. Synthetic Contact Models

Our empirical data set for contact patterns is much larger than
any comparable data set. We have learned quite a bit about mo-
bile device contact patterns and are certain that there is much
more that can be gleaned. In addition, we believe that our data
set and analysis can be used to develop synthetic models for
real-world contact patterns, as done in [30] (for modeling In-
ternet traffic) and [25] (for modeling association with WiFi ac-
cess points).

F. Energy Consumption During Contact Process

We only consider energy used for sending out probing
messages in this paper. Energy used in other parts of the
contact process should also be considered when designing
the contact protocols. First, a device needs to periodically
listen to the channel in order to be probed. Increasing the
listening frequency can reduce the time duration of device
discovery. Thus, energy used in each probe for the probing
device can be reduced. However, the device to be probed will

consume considerable energy in periodic listening. Therefore,
there is a tradeoff between the listening frequency and energy
consumption of sending probing messages [31]. Second, the
energy used in information exchange after the contact has been
detected should also be considered. In this case, the device may
need to use additional information—such as the importance
of the contact, expected amount of information exchange, and
residual energy—to decide whether to take the contact or not.

APPENDIX
CONTACT MISSING PROBABILITY
WHEN PROBES ARE UNRELIABLE

Consider the case that a probe can fail to detect a present
contact with probability . We also assume that the failure
probabilities of consequent probes are independent. For con-
tacts with , they will either not be probed at all or
only be probed once during their contact duration. As shown
in Section II, the probability that these contacts will not be
probed is . Therefore, the probability that these
contacts can be probed once is . As probes can
fail with probability of , the missing probability given that

is

(31)

Similarly, for contacts with , they can be
probed by times or times during their contact dura-
tion. If a contact has been probed for times, the probability
of missing that contact is for independent probes. Define

. We have

(32)
Therefore

Note that only depends on and in this case.
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