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Abstract 

Hydraulic systems have the characteristics of strong fault concealment, powerful nonlinear time-varying signals, and 
a complex vibration transmission mechanism; hence, diagnosis of these systems is a challenge. To provide accurate 
diagnosis results automatically, numerous studies have been carried out. Among them, signal-based methods are 
commonly used, which employ signal processing techniques based on the state signal used for extracting features, 
and further input the features into the classifier for fault recognition. However, their main deficiencies include the 
following: (1) The features are manually designed and thus may have a lack of objectivity. (2) For signal processing, fea-
ture extraction and pattern recognition are conducted using independent models, which cannot be jointly optimized 
globally. (3) The machine learning algorithms adopted by these methods have a shallow architecture, which limits 
their capacity to deeply mine the essential features of a fault. As a breakthrough in artificial intelligence, deep learn-
ing holds the potential to overcome such deficiencies. Based on deep learning, deep neural networks (DNNs) can 
automatically learn the complex nonlinear relations implied in a signal, can be globally optimized, and can obtain the 
high-level features of multi-dimensional data. In this paper, the main technology used in an intelligent fault diagnosis 
and the current research status of hydraulic system fault diagnosis are summarized and analyzed. The significant pros-
pect of applying deep learning in the field of intelligent fault diagnosis is presented, and the main ideas, methods, 
and principles of several typical DNNs are described and summarized. The commonality between a fault diagnosis 
and other issues regarding typical pattern recognition are analyzed, and research ideas for applying DNNs for hydrau-
lic fault diagnosis are proposed. Meanwhile, the research advantages and development trend of DNNs (both domes-
tically and overseas) as applied to an intelligent fault diagnosis are reviewed. Furthermore, the fault characteristics 
of a complex hydraulic system are summarized and discussed, and the key problems and possible research ideas of 
applying DNNs to an intelligent hydraulic fault diagnosis are presented and comprehensively analyzed.
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1  Introduction
Hydraulic systems are widely used in modern machin-
ery owing to a multitude of advantages, such as a fast 
response, significant load stiffness, large power density, 
and superior stability. A hydraulic system is often the 
core component of engineering equipment, such as con-
trol and power transmission systems, which are typically 
operated in the field. A hydraulic system can be damaged 
by exposure to sunshine, rain forests, and dust particles, 
among other factors, and by unstable working conditions 

such as a high load or severe impact. Therefore, such 
systems are prone to faults, and if certain initial abnor-
malities are not located and eliminated in time, they may 
develop into a functional disability and even lead to a 
dangerous condition. Therefore, it is extremely important 
to diagnose and remove such problems in time.

However, a proper hydraulic fault diagnosis remains 
a challenge. Compared with common mechanical and 
electrical structures, hydraulic system faults in engi-
neering equipment are more hidden and unclear. It is 
therefore difficult to obtain fault information, and the 
mapping relationship between a fault characterization 
and fault cause is complex. It is thus extremely important 
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to research key technologies and methods for achieving 
hydraulic fault diagnosis.

Currently, fault diagnosis methods can be divided 
into three categories, mode-, knowledge-, and signal-
based methods. Model-based methods must establish 
the model of the system before a diagnosis; hence, they 
require a clear understanding of the structure, principle, 
and mechanism of the diagnosed object [1]. They mainly 
include a state estimation, parameter estimation, and 
an equivalent space. However, for a complex hydraulic 
system, it is difficult to establish a model owing to cou-
pling between the different variables. Knowledge-based 
methods are based on obtaining a large amount of expert 
knowledge to simulate an expert reasoning process of a 
certain model. They are suitable for situations in which 
the fault reasoning is clear and the decision logic is 
strong [2]. However, their poor incremental learning abil-
ity makes it difficult to add new knowledge to the exist-
ing system, and the learning of new samples will be at 
the cost of giving up original knowledge. Owing to the 
dynamic complexity of a hydraulic system and the lack of 
its fault mechanism, prior knowledge is insufficient, thus 
leading to fewer studies in this area.

Signal-based methods employed to carry out a diagno-
sis are based on state signals, such as vibrations, sound, 
temperature, and pressure. If the system has a fault, it 
should be reflected in the signal. Thus, the essential fea-
ture of a fault can be theoretically obtained, provided 
the features of the signal are appropriately mined and 
the pattern recognition method is properly carried out. 
Signal-based methods have been widely studied in intel-
ligent fault diagnosis. First, it benefits from the develop-
ment of sensor and storage technologies, which allow the 
monitoring system to collect and store large amounts of 
offline and online signal samples. The second reason lies 
in the constant innovation and high-level performance 
achieved by machine learning algorithms. Machine 
learning [3] is a type of computer program that can con-
tinuously obtain new knowledge and an optimized per-
formance based on incremental learning. When used in 
a fault diagnosis, the knowledge can be automatically and 
self-adaptively induced and generalized from the sam-
ples obtained. It is therefore is an ideal model for feature 
extraction and pattern recognition.

Currently, a popular research area of machine learn-
ing is focused on deep learning, and the most promis-
ing approach is the use of deep neural networks (DNNs), 
which have been widely researched and used in image 
recognition, speech recognition, and other pattern rec-
ognition fields. Their surprising and outstanding per-
formance has aroused the attention of experts in the 
area of fault diagnosis. Consequently, in this paper, the 
research status of different technologies and the prospect 

of applying signal-based hydraulic intelligent fault diag-
nosis methods based on a DNN are thoroughly analyzed 
and discussed. The remaining sections are as follows: In 
Section  2, the current research status on signal-based 
intelligent fault diagnosis methods are summarized and 
analyzed. In Section 3, several typical DNN models that 
can be potentially used in intelligent diagnosis are listed, 
and their structure, characteristics, and application are 
analyzed. In addition, the broad prospect of applying 
a DNN to a hydraulic fault diagnosis is presented. The 
research status of typical DNNs used in the field of intel-
ligent fault diagnosis is analyzed in Section  4. In Sec-
tion  5, the characteristics of complex hydraulic system 
faults are analyzed, and the key problems and possible 
research areas when applying DNNs to an intelligent 
hydraulic fault diagnosis are proposed and thoroughly 
analyzed. Finally, some concluding remarks are provided 
in Section 6.

2 � Overview of Fault Diagnosis Technology
The fault diagnosis of a hydraulic system is included in a 
mechanical fault diagnosis. A hydraulic system fault diag-
nosis needs to combine the structural characteristics of 
the hydraulic system, the signal manifestation, and other 
factors. The diagnosis process has not changed. Accord-
ing to the content of the mechanical fault diagnosis, a 
signal-based intelligent diagnosis is usually a compound 
method with several processes. Each process and the 
main methods are shown in Figure 1. As indicated in Fig-
ure 1, the common technology during each process of a 
signal-based intelligent fault diagnosis will be thoroughly 
discussed.

2.1 � Main Flow of Fault Diagnosis
2.1.1 � Signal Processing and Feature Extraction
Feature extraction from a signal is intensely crucial in 
a fault diagnosis because it determines the result of the 
subsequent fault recognition. Different types of signals 
such as audio, vibration, temperature, and oil debris 
signals [4] can be used to reflect the state of a machine. 
Among them, a vibration signal is widely used because it 
has been deeply researched in theory and is easy to col-
lect. Hence, vibration signals are taken as an example in 
the following analysis.

(1) Signal separation
The original signal typically needs to be decomposed 

into several components to de-noise or separate different 
faults. Typical decomposition methods are shown in Fig-
ure 1. These are mainly blind source separation methods, 
such as wavelet (package) decomposition, singular value 
decomposition (SVD), empirical mode decomposition 
(EMD), and ensemble empirical mode decomposition 
(EEMD).
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Zhu et  al. [5] proposed a shift-invariant sparse cod-
ing method of blind source separation, which was used 
to extract the pressure pulsation for hydraulic pumps 
and achieved excellent results. Focusing on the problem 
of EMD sensitivity to noise, Van et  al. [6] put forward 
a hybrid of a non-local-mean decomposition method. 
However, the experiment results showed that the above 
methods are not ideal for a hydraulic fault. The first rea-
son is that the features of a hydraulic composite fault are 
not necessarily the sum of those of a single fault. The sec-
ond reason is that the same fault with a different degree 
of damage does not necessarily show the same frequency 
components, and occasionally even excites new fault 
features. Regarding these issues, Figure  2 demonstrates 
a good case, which indicates the Hilbert marginal spec-
trum based on the improved EEMD of different fault 
signals.

(2) Signal processing and feature extraction
The purpose of signal processing is to realize a signal 

transformation and feature extraction. The extracted fea-
tures, such as the time-domain, frequency-domain, time-
frequency, and statistical features will be used for the 
fault pattern recognition.

As for a hydraulic vibration signal, owing to its non-
stationary and strong time-varying characteristics, a 
Fourier transform cannot describe how the frequency 
of the signal changes over time. Goharrizi used a Fou-
rier transform for a leakage detection of a hydraulic 
cylinder, although the results were unsatisfactory. The 
author then applied a wavelet [7] and an EMD [8] to 
decompose the hydraulic vibration signals. In addition, 
a short-time Fourier transform (STFT) was proposed 
by Gabor in 1946. Based on the original Fourier trans-
form, a moving window is used during the transfor-
mation, which can realize the localization of the local 
frequency characteristics. Restricted by the Heisenberg 
uncertainty principle, it cannot achieve a high resolu-
tion in the time- and frequency-domains at the same 
time.

The Wigner-Ville distribution (WVD) [9] has good 
mathematical operation properties. When used to ana-
lyze a non-stationary signal, a good performance is dem-
onstrated most of the time. However, the WVD has an 
insuperable defection—cross interference will be gener-
ated among the different frequency components. When 
used to detect some hydraulic faults, such as a cavitation 

Figure 1  Processes of signal-based intelligent fault diagnosis and the main methods used in each process
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a  Normal      b  Cavitation 

egakaelthgiLc    d  Moderate leakage 

e  Severe leakage f  Cavitation + mild jam

g  Cavitation + light leakage h  Hydraulic cylinder clamping + light leakage 
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Figure 2  Marginal Hilbert spectrum of various types of hydraulic fault signals



Page 5 of 22Dai et al. Chin. J. Mech. Eng.           (2019) 32:75 

and composite fault, it cannot successfully extract the 
frequency characteristics.

The wavelet transform inherits the localization idea 
of STFT. At the same time, it provides a time-frequency 
window that can automatically and adaptively change 
with the frequency. Through an expansion and transla-
tion operation, WT can realize a high frequency resolu-
tion at low frequency and a high time resolution at a high 
frequency, making it easy to focus on the details of the 
signal [10]. Thus, it is an ideal tool for a time-frequency 
analysis of a signal. However, the selection of a wavelet 
base has significant influence on the results of a time-fre-
quency transformation [11]. Different wavelets are suita-
ble for analyzing different time-frequency characteristics. 
For inexperienced researchers, how to choose the wavelet 
base is a challenge.

Consequently, signal processing methods with a multi-
scale expression and strong adaptive ability, such as the 
self-adaptive wavelet, EMD, and EEMD, have become 
areas of focus. In particular, the latter two are entirely 
self-adaptive, and thus are more suitable for the non-sta-
bility signals of a hydraulic fault. To solve the problems 
of an end-effect, modal aliasing, and an overshoot-under-
shoot of the EMD and EEMD, numerous improved algo-
rithms have been suggested. For example, Amirat et  al. 
[12], Zheng et  al. [13], and Chai et  al. [14] proposed 
methods based on a signal extension to eliminate the 
end-effect. In addition, Huang et al. [15] tried to improve 
the fitting algorithm to reduce the overshoot-undershoot 
phenomenon of the upper and lower envelopes, and 
Wang et al. [16] and Chen et al. [17] relieved the modal 
aliasing by optimizing the decomposing termination 
conditions. The improved EMD and EEMD can describe 
the transient characteristics of the signal more clearly, 
and thus they are more suitable for a hydraulic vibration 
signal.

(3) Feature fusion
To improve the diagnosis credibility of complex equip-

ment working in an extremely noisy environment, 
researchers have attempted to combine several feature 
extraction methods and fuse their extraction results as 
a basis for diagnosis. For example, Li and Wang [18] put 
forward an algorithm of feature linear fusion based on 
affinity propagation (AP) clustering. Its validity was veri-
fied on a test platform of an aero-engine rotor. In addi-
tion, Li et al. [19] combined an SVD with morphological 
filtering and applied it to fault feature extraction.

When different features are fused, there will be a high-
dimensional vector, thereby causing the consumption of 
large amounts of computing resources. At the same time, 
not all features have the same contribution to, and cor-
relation, with a fault diagnosis. Therefore, a dimensional-
ity reduction and sparse representation are required. As 

shown in Figure 1, the main methods studied include the 
principal component analysis (PCA) [20], independent 
component analysis (ICA), and linear discriminant analy-
sis (LDA) [21]. The above methods are all based on the 
hypothesis that the samples obey a Gaussian distribution 
(PCA) or a linear model (ICA or LDA). Nevertheless, 
the actual vibration signals usually do not satisfy these 
conditions. Thus, some kernel methods, such as a kernel 
principal component analysis (KPCA) and kernel linear 
discriminant analysis (KLDA), have been presented to 
solve this problem. They use a kernel function to convert 
data from one space to another to relieve the difficulty of 
extracting nonlinear features.

In addition to kernel methods, many learning methods 
have also been widely studied, such as the gray relational 
analysis (GRA) [22], Kalman filtering [23], and non-neg-
ative matrix factor [24]. However, GRA needs to deter-
mine the optimal values of the indicators first, and thus is 
subjective. In addition, the number of calculations of the 
Kalman filter will increase three times with an increase 
in the information dimension, and a non-negative matrix 
decomposition focuses on the extraction of important 
local features and cannot fully reflect global properties of 
the signal.

2.1.2 � Fault Pattern Recognition
Machine learning is a promising and widely researched 
classification algorithm owing to its powerful adaptive 
and incremental learning ability. Among them, an artifi-
cial neural network (ANN) and a support vector machine 
(SVM) are the two most typical classifiers.

In the field of fault diagnosis, the most researched 
ANNs include a back propagation (BP) network, a radial 
basis function (RBF) network, an auto-associative neu-
ral network (AANN), a Hopfield network, a self-organ-
ization mapping (SOM) network, and a Boltzmann 
machine. To overcome the proneness of following into 
the local optimum, scholars have put forward many 
new methods such as an echo state network (ESN) [25], 
a probabilistic neural network (PNN) [26], and a fuzzy 
neural network (FNN) [27]. Regarding complex classifi-
cation problems, there are many bottlenecks that restrict 
improvement of the ANN performance. Among the main 
reasons for this, one is an over-fitting owing to a highly 
strict training goal. If no prior knowledge (experience) is 
available, it is difficult to determine what training goal is 
the most suitable. The second reason is that the construc-
tion and training of the network are dependent on the 
experience of the researchers. Thus, prior to 2006, studies 
related to an ANN remained stagnant, and therefore its 
performance showed little significant improvement.

An SVM uses an inner product kernel function instead 
of a nonlinear mapping to a high-dimensional space. 
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Thus, compared with an ANN, it shows numerous unique 
advantages in solving nonlinear, high-dimensional pat-
tern recognition problems, particularly when the number 
of samples is small. Therefore, it has been widely studied 
in the field of fault diagnosis [28, 29]. Researchers have 
proposed many improved versions of an SVM for spe-
cific diagnostic issues, such as a Gauss kernel SVM [30], 
particle swarm optimization SVM (PSO-SVM) [31], and 
EEMD-SVM [32]. However, the application of an SVM 
to an intelligent fault diagnosis of a complex hydraulic 
system is limited. One reason for this is that, when faced 
with large-scale training samples, training of an SVM 
is difficult to carry out. However, in the real world, an 
intelligent diagnosis is always based on on-line monitor-
ing, and there are inevitably large numbers of samples 
applied. As the second reason, an SVM is not suitable 
for a multi-classification problem. With an increase in 
system complexity, if also considering the fault superpo-
sition and degree of damage, it is inevitable that the num-
ber of fault modes will significantly increase.

In addition to an ANN and an SVM, other machine 
learning algorithms, including logistic regression [33], 
decision tree [34], Hidden Markov model [35], and 
Bayesian network [36], have been applied in fault pat-
tern recognition and have obtained some interesting 
achievements.

2.2 � Research Status of Fault Diagnosis for Hydraulic 
Systems

Fault diagnosis in a hydraulic system is a specific applica-
tion of the fault diagnosis technology used in a hydrau-
lic system. With the structure of hydraulic equipment 
becoming more complex, its functionality is also becom-
ing more powerful and its level of automation is increas-
ing, thereby requiring greater reliability of the hydraulic 
system. The fault diagnosis technology of a hydraulic sys-
tem is being continuously developed and innovated, and 
a comprehensive discipline integrating hydraulic control, 
sensors, decision theory, statistical mathematics, signal 
processing, artificial intelligence, and pattern recognition 
has gradually been formed. In retrospect, the following 
three stages of development have generally occurred.

2.2.1 � Subjective Diagnosis
A subjective diagnosis method mainly relies on techni-
cal personnel to obtain the condition information of 
hydraulic equipment through a direct observation or 
simple diagnostic instrument. Many practical diagnosis 
methods have been summarized, including sensory diag-
nosis, instrument detection, parameter measurement, a 
replacement component method, disassembly compo-
nent method, logic chain analysis, graph theory, fault tree 
analysis, and section division method. For example, Lu 

[37] elaborated on a method for eliminating on-site faults 
of a hydraulic system based on a subjective diagnosis. 
In addition, Ji et  al. [38] used graph theory and a block 
diagram to analyze the fault mechanism and diagnosis 
method of hydraulic components. Although a subjec-
tive diagnosis method achieves simplicity, rapidity, and 
practicability, it relies too much on the practical experi-
ence and personal professional ability of the maintenance 
personnel. It has a limited diagnostic ability for complex 
hydraulic systems, and the process of disassembling and 
assembling the hydraulic equipment damage the lifetime 
of the equipment.

2.2.2 � Fault Diagnosis of Hydraulic System Based on Signal 
Processing Technology and Mathematical Model

With the development of signal processing technology 
and faster computer computations, a variety of mature 
mathematical models and signal processing methods 
have been introduced into the field of hydraulic diag-
nosis. A hydraulic fault diagnosis method based on sig-
nal processing technology extracts the corresponding 
features by measuring the hydraulic state parameters, 
and describes the corresponding relationship between 
the measured signals and faults through a mathemati-
cal model to achieve a diagnosis. This mainly includes 
a time domain analysis, frequency domain analysis, 
time-frequency analysis, state estimation, and param-
eter estimation. For example, Sepehri et  al. [39, 40] 
used an improved Kalman filter to estimate the state of 
the hydraulic actuator and hydraulic system leakage. In 
addition, Zhu and Gao [41] discussed the relationship 
between the change in flow of a hydraulic system and 
various faults. Du and Zhang [42] and Chen et  al. [43] 
analyzed the vibrations and noises occurring in hydrau-
lic system components within the time or frequency 
domain, and judged the fault type, degree, and location 
through a comparison with the time-frequency charac-
teristics of normal signals. Moreover, Jiang et al. [44], Du 
et al. [45], and Goharrizi and Sepehri [7] used a wavelet 
transform to analyze the vibration signal of a hydraulic 
pump, the pressure signal of a hydraulic cylinder, and a 
hydraulic actuator, respectively.

The type of hydraulic fault diagnosis applied compen-
sates the inefficiency of applying manual data statistics 
by applying an objective parameter measurement and 
through the advantage of computer signal processing. 
With the help of the identification capability of a mathe-
matical model, such a diagnosis has achieved good appli-
cation results in engineering fields. However, a hydraulic 
system is a non-linear time-varying system that has cer-
tain shortcomings, such as a difficulty in feature extrac-
tion, establishing a complex mathematical model, and 
other factors.
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2.2.3 � Fault Diagnosis of Hydraulic System Based on Artificial 
Intelligence

A technology for the diagnosis of a hydraulic system 
fault, which uses an artificial intelligence (AI) pattern 
recognition method as its main body and combines vari-
ous feature extraction methods, has dominated the focus 
and development trend in this field. Abbott [46] designed 
a fault diagnosis approach of expert for a hydraulic sys-
tem used on the NASA space shuttle; Crowther et al. [47] 
established a neural network identification model for the 
hydraulic system of a second-order hydraulic actuator. 
Amin et al. [48] combined multi-feature fusion and fuzzy 
decision theory to study the on-line health monitoring 
of hydraulic pumps. Chen et al. [49] acquired the vibra-
tion characteristics of hydraulic motors through a second 
generation wavelet transform and used an SVM to diag-
nose a fault in a hydraulic system. In addition, Saeed et al. 
[50] combined a PCA, an ANN, and a multi-adaptive 
neuro-fuzzy inference system to diagnose hydraulic pipe-
line faults.

Domestically, Jiang et al. [51] studied a fusion diagnosis 
strategy for a wavelet analysis, neural network, and fuzzy 
logic used in a plunger pump. Mou [52] discussed the 
application of an expert system in the fault diagnosis of a 
hydraulic system used in coking coal machinery. Lu [53] 
analyzed and diagnosed the vibration signals of a hydrau-
lic pump by combining an EMD method with a fuzzy 
C-means clustering analysis. In addition, Tang [54] stud-
ied the hydraulic system of a concrete pump truck using 
an EMD, Hilbert envelope spectrum, and PSO-SVM. 
Chen et al. [17] studied the application of an EEMD and 
an SVM in a hydraulic fault diagnosis. Chai et  al. [14] 
used a PCA to deal with a variety of time-frequency char-
acteristics, and then applied a KELM model to diagnose a 
fault in a hydraulic system.

2.3 � Analysis and Comments
At present, with the continuing progress regarding 
hydraulic control theory, excavator technologies, sensor 
and test technologies, signal processing methods, artifi-
cial intelligence, and pattern recognition methods, fault 
detection and recognition technologies used in hydrau-
lic systems have made significant progress. Based on a 
theoretical analysis and a summary of the practical appli-
cations in this area, the following issues should not be 
overlooked.

2.3.1 � How to Minimize or Even Avoid the Influence of Human 
Subjectivity on the Selection of Features

Feature extraction is unavoidably dependent on the 
experience and knowledge of researchers because signal 
processing methods and their characteristic parameters 
are selected artificially, and rely on a large amount of 

manpower to extract discriminative features and analyze 
such features for an accurate fault recognition and classi-
fication, which is time-consuming and requires abundant 
expertise in terms of signal processing and analysis and 
fault diagnosis. Thus, finding a method that can auto-
matically and adaptively acquire the signal features will 
clearly be a benefit to fault pattern recognition.

2.3.2 � How to Realize Joint Optimization of the Feature 
Extraction and Pattern Recognition

Feature extraction and pattern recognition are currently 
conducted separately using independent models, such 
as a wavelet and decision tree [55], an EMD and ANN 
[56], an EMD and SVM [57], and an EEMD and a GA-
SVM [17]. With these methods, the output of the previ-
ous model is the input of the latter. Because each process 
is independent, a cognitive deviation of different models 
cannot be globally corrected.

2.3.3 � How to Achieve High‑Level Transformation and Deep 
Fusion of State Signal Feature

Although shallow machine learning methods can auto-
matically recognize faults based on the extracted fea-
tures, which significantly reduce the influence of manual 
experience and subjectivity in the recognition process 
and results, the shallow architecture limits the capabil-
ity of automatically learning high-level features from 
the input. Thus, traditional machine learning methods 
depend highly on artificially extracted discriminative fea-
tures as the input. However, it is difficult to determine 
the most suitable features to be extracted, and different 
features may directly lead to different diagnosis results, 
which is time consuming and unstable.

Because of the structure and closed operation charac-
teristics of the hydraulic system, a fault of a hydraulic sys-
tem has certain characteristics including a concealment, 
a large influence of random factors, a complex mapping 
relationship between the signal characteristics and the 
system state, and thus it is extremely important to select 
an appropriate diagnosis method. As the latest achieve-
ment and research focus into AI, deep learning has been 
successfully applied to image recognition, speech rec-
ognition, and other complex pattern recognition fields. 
Owing to its powerful feature extraction, transformation, 
and fusion and pattern recognition capabilities, deep 
learning has received increasing attention in the field of 
fault diagnosis.

3 � Deep Neural Network and Its Typical Models
3.1 � Deep Neural Network
Hinton first proposed an unsupervised learning algo-
rithm for a deep belief network (DBN) [58], which solved 
the difficulty of applying a training deep model and 
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created an upsurge in the amount of research conducted 
in this field. In 2013, deep learning was considered a 
top-ten breakthrough by MIT Technology Review. At the 
beginning of 2016, the Baidu deep speech recognition 
system was also ranked as an annual MIT ten big break-
through. Each of the above fully reflects the research and 
application prospects of deep learning.

Deep learning is a type of machine learning [59]. 
Through multi-layer nonlinear network training, deep 
learning can realize a complex function approximation, 
represent a distributed expression of the input, and learn 
the essential features of the samples. The essence of deep 
learning is to learn features that are more useful by train-
ing a model with many hidden layers (deep structures) 
and a massive amount of training samples to eventually 
improve the ability of classification or prognosis.

In general, any mapping structure has the potential 
to build a deep model, including a local binary pattern 
(LBP), a PCA, or an LDA. Thus, any nonlinear structure 
with more than three layers can be considered a deep 
model. Therefore, the connotation of deep learning is 
extremely wide, including numerous models and struc-
tures. Among all deep models available, the deep neural 
network (DNN) has been the most rapidly developed 
and broadly used. The advantages of the DNN are not 
only reflected in the increase in the number of hidden 
layers, but also in the optimization of the network struc-
ture and an improvement in the training method applied. 
Although there are many different variants of DNNs, 
they have essentially evolved from the basic structures of 
the parent class. Among these, the most researched and 
widely used include a stacked autoencoder (SAE), a deep 
belief network (DBN), a convolutional neural network 
(CNN), and a recurrent neural network (RNN).

3.2 � Introduction to Typical DNNs
3.2.1 � Stacked Autoencoder
An SAE [60] is used to process high-dimensional com-
plex data, such as a dimensionality reduction or feature 
learning. The structure of an SAE is stacked using several 
autoencoders (AEs). An AE is a typical three-layer neural 
network consisting of an input layer, a hidden layer, and 
an output layer. As shown in Figure 3, the network struc-
ture is divided into coding and decoding processes. Map-
ping from the input layer to the hidden layer is a coding 
process, and mapping from the hidden layer to the out-
put layer is a decoding process.

Assume that the input data is X, the reconstructed 
data is X̂ , and the average reconstruction error between 
X and X̂ is as shown in Eq. (1), where n is the number 
of training samples, X̂ i is a reconstructed sample, Xi is 
the input, W is the weight, and b is bias. AE extracts and 

compresses the input features in the coding part and then 
restores the compressed features in the decoding part. 
The aim is to minimize errors between the reconstructed 
data and the original data to obtain the most essential 
characteristics of the input. The architecture of an SAE is 
shown in Figure 4; for the training, an unsupervised self-
learning method is applied such that each AE is trained 
sequentially so that the entire network is trained. The 
hidden layer parameters of each AE are then stacked to 
construct the SAE. 

(1)J (W , b) =
1

n

n
∑

i=1

(

1

2

∥

∥

∥
X̂ i

− Xi
∥
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∥

2
)

.

Figure 3  Single autoencoder (AE) architecture

Figure 4  Architecture of stacked autoencoder (SAE)
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In addition to the structure of the SAE mentioned 
above, some deformation models, such as a sparse 
autoencoder [61] and a denoising autoencoder [62], have 
been developed. These different structural forms make 
the extracted features have different sparsity, robustness, 
and other characteristics. An SAE has been successfully 
applied to dimension reduction and information retrieval 
tasks. An SAE has a strong feature expression capability, 
allowing it to abstract the input in depth layer by layer 
and thus continuously obtain the essence of the input and 
a high-level feature expression, often achieving better 
classification results.

3.2.2 � Deep Belief Network
A DBN is a deep neural network with multiple hidden 
layers, which is stacked using multiple restricted Boltz-
mann machines (RBMs). An RBM [63] is a typical neural 
network divided into a visible layer v and a hidden layer 
h. The nodes of the visible and hidden layers are con-
nected by weight w, and bm and pn are the as biases of 
the corresponding units. The nodes of two layers are fully 
connected, whereas the nodes of the same layer are not 
connected. The structure of an RBM is shown in Figure 5. 
As Figure  6 indicates, a DBN consists of unsupervised 
RBMs and a supervised softmax classifier. The core idea 
is to train each RBM through unsupervised learning, and 
only train a single RBM at a time, using its training result 
as the input of a later RBM. The unsupervised pre-train-
ing method and greedy layer-by-layer learning is helpful 
in avoiding a problem in which the network falls into the 
local optimum, and the most essential characteristics of 
the input information can be obtained.

A DBN has strong autonomous learning and reasoning 
capabilities. It emphasizes the hidden representation of 
the learning data and highlights the characteristic expres-
sion of the data. The DBN solves the problems inherent to 
the training of multi-layer neural networks with a tradi-
tional BP algorithm as follows: a) a large number of train-
ing samples with labels, b) a slow convergence speed, and c) 
a falling into the local optimum owing to an inappropriate 

parameter selection. This is helpful for solving issues that 
are difficult to deal with through shallow learning algo-
rithms such as high-dimensional, complex, and non-linear 
expressions of large-capacity data.

3.2.3 � Convolutional Neural Network
A CNN [64] is a multi-layer supervised learning network. 
As shown in Figure  7. Its network structure is composed 
of alternating convolution layers and sampling layers, fol-
lowed by a full-connection layer and finally a classification 
layer. Each convolution kernel slides on the data and per-
forms a convolution operation in the local field concur-
rently, which can explore the characteristics of the original 
input. In general, the formula for calculating the convolu-
tion layer is as follows: 

Among them, l represents the number of layers, k repre-
sents the convolution core, Mj represents the input recep-
tive field, and b indicates the bias.

The main function of a pooling operation is to reduce the 
resolution and dimensions of the feature map, and to some 
extent increase the robustness of the network to displace-
ment, scaling, and distortion. Pooling can be divided into 
maximum and average pooling. The form of the lower sam-
pling layer is shown in Eq. (3):

(2)xlj = f





�

i∈Mj

xl−1
i × klij + blj



.

(3)xlj = f (β l
j down(x

l−1
j )+ blj).
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Figure 5  Architecture of restricted Boltzmann machine (RBM)
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where down(·) is a pooling function and β is a weight 
coefficient.

As a characteristic of the CNN, the observation fea-
tures obtained using a local receptive field method are 
independent of the translation, scaling, and rotation. 
During the convolution stage, the weight sharing struc-
ture reduces the network complexity, which is more 
obvious when the input features have a high resolution; 
during the down-sampling stage, the feature is sub-sam-
pled based on the principle of a local correlation, which 
can effectively reduce the amount of data processing 
while retaining useful structural information. In particu-
lar, the multi-dimensional vector data can be directly 
input into the network, which avoids the complexity of 
the data reconstruction during feature extraction.

3.2.4 � Recurrent Neural Network
An RNN [65] is one of the most advanced sequential data 
algorithms available. Because of its internal memory, it 
is suitable for machine learning issues involving sequen-
tial data. According to a certain time series, the structure 
with rings can be expanded into a sequence network, 
as shown in Figure  8, where xt is the input of time t of 
the network, ht represents the memory at time t, ot rep-
resents the output of time t, and the direct weight from 
the input layer to the hidden layer is expressed by G . The 
original input is abstracted as the input of the hidden 
layer. In addition, the weight W  from one hidden layer 
to another hidden layer is the memory controller of the 
network, which is responsible for scheduling the mem-
ory, and the weight from the hidden layer to the output 
layer is K  , and the representation learned from the hid-
den layer will be abstracted through it again as the final 
output.

The specific calculation process of the forward propa-
gation of an RNN is as follows, where f is a non-linear 
transformation function, such as tanh, and g can be a 
softmax or other function.

The current state ht of an RNN is determined by the 
state ht−1 of the previous moment and the current xt . 
Based on its structural characteristics, it can be con-
cluded that an RNN can best deal with an issue related 
to the time series. For the sequence data, the data at dif-
ferent times in the sequence can be input into the net-
work in turn, and the output can be the prediction of 
the next time in the sequence, or the processing result 
of the information at the current time. RNNs solve the 
training problem of sequential data beautifully; hence, 
they have been widely used in natural language pro-
cessing fields, such as speech and handwriting recogni-
tion and machine translation.

(4)ht = f (Gxt +Wht−1 + b).

(5)ot = g(Kht + c).

Figure 7  Architecture of convolutional neural network (CNN)
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Figure 8  Architecture of recurrent neural network (RNN)
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3.2.5 � Generative Adversarial Network
A generative adversarial network (GAN) [66] is a deep 
learning model and has become one of the most prom-
ising methods for applying unsupervised learning in a 
complex distribution in recent years. The model pro-
duces a good output through the game learning of two 
modules within the framework: a generative model and 
a discriminative model. A generative model (G) captures 
the distribution of the sample data, and a discriminant 
model (D) is a binary classifier, estimating the probability 
that a sample comes from the training data rather than 
the generated data. In addition, G and D are generally 
non-linear mapping functions, such as a multi-layer per-
ceptron or a CNN. In practice, DNNs are generally used 
as a G or D. The main function of a GAN is image genera-
tion and data enhancement.

Specifically, as shown in Figure 9, a GAN mainly con-
sists of two independent neural networks: a generator 
and a discriminator. The task of the generator is to sam-
ple a vector z from a random uniform distribution and 
then output the synthetic data G(z) ; the discriminator 
will take the real data x and synthetic data G(z) as input 
and output the probability that the sample is “true.”

The objective function of a GAN is shown in Eq. (6), 
where D(x) denotes the probability that the discrimina-
tor will consider x to be the real sample, whereas D(G(z)) 
denotes the probability that the discriminator will con-
sider the synthetic sample to be false. The form of Eq. (6) 
can be obtained by adding the logarithms: 

A GAN has been one of the few successful technolo-
gies in unsupervised machine learning, and this technol-
ogy is rapidly innovating the ability to conduct generative 
tasks. GANs have been widely used in industry, from 

(6)

min
G

max
D

V (D,G) =Ex∼pdata(x)[log(D(x)]

+ Ez∼pz(z)[log(1− D(G(z)))].

interactive image editing and three-dimensional shape 
estimation to robot learning. They have also been applied 
in language tasks to improve the stability and increase 
the convenience of the training process.

3.2.6 � Summary of Typical DNNs
Table  1 provides a brief summary of the typical DNN 
models that are commonly used in pattern recognition.

The successful application of a DNN to complex pat-
tern recognition stems mainly from the advantages of its 
model structure and training method.

(1)	 A deep structure with multiple layers is the core 
aspect of a DNN, which allows it to implement an 
advanced nonlinear transformation in a layer-by-
layer manner. DNNs therefore have an excellent 
feature extraction capability.

(2)	 In a DNN, the feature converter and mode classifier 
are integrated into a single model. Feature learning 
is oriented toward pattern recognition, and thus the 
feature transformation and classification in a DNN 
are jointly optimized.

(3)	 Layer-by-layer greedy unsupervised learning is a 
self-adaptive learning process that greatly reduces 
the influence of human subjectivity on the param-
eter initialization and training result.

3.3 � Similarity Analysis of Fault Diagnosis and Other 
Pattern Recognition Problems

DNNs have been used in 1D (e.g., text, time-series sig-
nal), 2D (e.g., images, time-frequency representation), 
and even 3D (e.g., video, 3D images) pattern recognition. 
Similarly, as shown in Figure 10, when a DNN is used in 
hydraulic fault diagnosis, its input may be 1D data, such 
as a time-domain signal (Figure 10(a)) or frequency spec-
trum (Figure  10(b)); 2D data, such as a time-frequency 

Figure 9  Principle of generative antagonistic network (GAN)



Page 12 of 22Dai et al. Chin. J. Mech. Eng.           (2019) 32:75 

diagram (obtained using a time-frequency joint analysis 
such as a wavelet transform (Figure 10(c)); and 3D data, 
including a time-frequency diagram of multiple sensor 
signals. As shown in Figure 11, the aforementioned sig-
nals can be used as the input of 1D DNNs, 2D DNNs, and 
even 3D DNNs. Figure 12 shows two realization routines 
(research ideas) based on 1D and 2D DNNs.

4 � Research Status of DNNs in Intelligent Fault 
Diagnosis Field

In 2015, Jia et  al. [85] highlighted the advantages and 
application future of DNNs. Scholars both domestically 
and abroad have carried out numerous studies on an 
intelligent fault diagnosis based on a DNN. Owing to the 
spatial limitations, only selected representative works are 
summarized herein.

4.1 � Research Status of SAE‑based Fault Diagnosis
In recent years, an increasing number of scholars have 
been paying attention to the use of an SAE to realize a 
fault diagnosis. Shao [86] developed a novel deep autoen-
coder feature learning method to diagnose a rotating 
machinery fault. The maximum correntropy is adopted 
to design a new deep autoencoder loss function for an 
enhancement of the feature learning from the measured 
vibration signals. In addition, an artificial fish swarm 
algorithm is used to optimize the key parameters of the 
deep autoencoder to adapt to the signal features. The 
proposed method was applied to the fault diagnosis of 
a gearbox and electrical locomotive roller bearing and 
achieved effective and robust diagnosis results. Chen 
[87] proposed a new multi-sensor data fusion technique 
that extracts the time- and frequency-domain features 
from the different sensor signals of rotating machinery, 
and these features are then input into multiple two-layer 
SAE neural networks for feature fusion. Finally, the fused 

Table 1  Summary and induction of typical DNNs

Models Structures Characters Applications

SAE Stacked AE layers + a classifier 1) Unsupervised learning
2) Layer-by-layer unsupervised learning, fol-

lowed by reverse supervised fine-tuning
3) Compression and distributed representation 

of dataset

1-dimensional (1D): Data de-noising [67]
2-dimensional (2D): Target recognition 

[68] 
3-dimensional (3D): High spectral image 

classification [69]

DBN Stacked RBM layers + a classifier 1) Unsupervised learning
2) Layer-by-layer unsupervised learning, fol-

lowed by reverse supervised fine-tuning
3) Learning probability distribution on genera-

tive structure

1D: Speech recognition [70]
2D: Radar image recognition [71]
3D: High spectral image classification [72]

CNN Alternately appeared convolution and sampling 
layers + a classifier

1) Supervised learning
2) Automatic learning of convolution kernels
3) Obtains the essence of the samples through 

a local convolution operation

1D: Speech recognition [73]
2D: Image classification [74]
Face recognition [75]
3D: Video classification [76]

RNN Input layer + closed-loop hidden layers + out-
put layer

1) Unsupervised learning
2) Feedback loop taking the output of the 

previous moment as input
3) Mainly used for modeling time-series signals

1D: Text classification [77]
Machine translation [78]
2D: Image annotation [79]
Emotional test [80]
3D: Video analysis [81]

GAN Generator + discriminator 1) Semi-supervised learning
2) Learn the probability distribution of the 

training samples and establish correlation 
between the input and output

1D: Image generation [82]
2D: Image retrieval [83]
3D: Video prediction [84]
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feature vectors are regarded as the machine health indi-
cators, and are used to train a DBN for further classifi-
cation. Wang [88] proposed a novel continuous sparse 
autoencoder (CSAE) that adds a Gaussian stochastic unit 
into the activation function to extract the features of non-
linear data. The proposed CSAE is applied to solve the 
problem of transformer fault recognition and achieve a 
superior correct differentiation rate. Similar studies have 
been extended to the fault diagnosis of complex systems, 
such as a motor [89], centrifugal pump [90], bearing [91, 

92], gearbox [93], and rectifier [94], and good results have 
been achieved.

By using and improving on various SAE deforma-
tion algorithms [95–97], scholars have made numerous 
achievements in terms of fault diagnosis. Since an SAE 
was first proposed, its main function has been feature-
oriented learning and a dimensionality reduction. Thus, 
when an SAE is used in a fault diagnosis, it can directly 
learn the sparse and noise reduction of the input signal, 
extract its robustness characteristics, and then realize a 
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fault classification. Because of its powerful feature extrac-
tion ability, it is suitable for an end-to-end fault diagnosis 
and can achieve a high performance in the case of a small 
number of samples.

4.2 � Research Status of DBN‑based Fault Diagnosis
Since Tamilselvan [98] first applied a DBN to a fault diag-
nosis of aircraft engine in 2013, an increasing number of 
scholars both at home and abroad have paid attention 
to this field and achieved numerous research results. 
Tran et al. [99] fused a DBN with a TKEO algorithm and 
applied result to a fault diagnosis of reciprocating com-
pressor valves. They used a GRBM instead of an RBM to 
overcome the disadvantage in which a traditional RBM 
can only input binary fault signals; they then combined 
a DBN with a traditional feature extraction method, 
achieving a higher level of accuracy. Shao et al. [100] first 
used a PSO algorithm to optimize the relevant parame-
ters of a DBN, and then applied the optimized DBN algo-
rithm to the fault diagnosis of rotating bearings. In the 
absence of prior fault information, a better recognition 
accuracy was achieved, and the difficulty of parameter 
selection in a DBN model was successfully resolved, pro-
viding an extremely good reference.

An increasing number of studies have been conducted 
on DBN-based fault diagnosis, which has potential 
advantages when applied to high-speed trains [101], solar 
cells [102], rolling bearings [103–105], and gearboxes 
[106]. Moreover, the field of application is widening. 
Summarizing existing studies, there are two main uses of 
a DBN for fault detection and recognition: one is to use 
it as a classifier, and the other is to integrate several steps 
(feature extraction, feature transformation, information 
fusion, and pattern recognition) into a single deep struc-
ture to realize their joint optimization and complete an 
intelligent diagnosis. A DBN does not require numerous 
labeled samples, which not only accelerates the conver-
gence speed of the network, it also achieves excellent 
diagnostic results, providing technical support for an effi-
cient and in-depth fault diagnosis.

4.3 � Research Status of CNN‑based Fault Diagnosis
The CNN have achieved significant success in the field 
of computer vision and image recognition, and has 
attracted the attention of numerous scholars in the 
area of intelligent fault diagnosis. Owing to its success-
ful application in the image recognition field, many 
researchers have treated the fault diagnosis issue as 
an image recognition problem. Summarizing existing 
researches, there are mainly two types of studies: The 
first is converting time-series signals into two-dimen-
sional images as the input of the CNN. Wen et  al. 

[107] used images of vibration signals as the input of a 
CNN, and achieved significant improvements in their 
proposed fault diagnosis method. Hoang et  al. [108] 
adopted a deep CNN structure in the fault diagnosis of 
rolling bearings and achieved an extremely high accu-
racy and robustness under noisy environments. The 
second is using 2D time-frequency images as the input 
of the CNN for a diagnosis. For example, Guo et  al. 
[109] used the transformation results after a continu-
ous WT as the input of a CNN to diagnose the fault 
of the rotating machinery. Wang et  al. [110] preproc-
essed an original signal using STFT to obtain a time-
frequency diagram, and then applied a CNN to extract 
the time-frequency features adaptively, to complete 
the diagnosis. We used a CNN to diagnose a rolling-
bearing fault based on a wavelet time-frequency dia-
gram [111, 112].

Fewer studies on a fault diagnosis based on a CNN 
have been conducted than those based on a DBN or an 
SAE, the reason for which may be that a CNN is pri-
marily applied to deal with 2D features in its initial 
application. The real-time state signal is usually a 1D 
vector. Therefore, some researchers have tried to con-
struct a 1DCNN to process the original signal for a fault 
diagnosis directly. Turker et al. [113] tested the current 
of a motor and used a 1DCNN to realize a real-time 
state monitoring and fault diagnosis. Peng et  al. [114] 
used a 1DCNN to diagnose the faults of HST wheel-
set bearings with vibration signals and achieved good 
results. With a 1DCNN, the signal is directly input 
into the network, and the 1D convolution kernels can 
be considered different digital filters. The function of a 
convolution kernel is similar to the sine basis in a Fou-
rier transform or the wavelet basis in a wavelet trans-
form. In addition, the sliding of a kernel is the same as 
the translation of a wavelet. Their difference lies in the 
fact that these kernels are acquired automatically and 
self-adaptively through learning, even unsupervised 
learning. Thus, a 1DCNN has a better feature extrac-
tion capability without a manual intervention.

According to the existing literature, similar to a fault 
diagnosis method based on a DBN, there are mainly 
two types of methods: one is to directly use a CNN for 
feature extraction and fault recognition, and the other 
is mainly to use a CNN for fault classification. The 
input of the network can be a time-domain signal, fre-
quency domain feature, time-frequency image, or other 
extracted feature vector. The unique topological struc-
ture of a CNN makes it highly invariant to the transla-
tion and scaling of the input sample features. Compared 
with a DBN and an SAE, a CNN better matches the fea-
ture scaling caused by a time shift and change in speed 
of the mechanical fault signal [115].
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4.4 � Research Status of RNN‑based Fault Diagnosis
The main difference between an RNN and a DBN, an 
SAE, and a CNN is that an RNN takes full account of 
the correlation between samples. That is, the pre-and 
post-samples influence the current sample, and an 
RNN is suitable for complex equipment or a real-time 
fault diagnosis. A fault diagnosis based on an RNN was 
used in the fault diagnosis field earlier than other deep 
learning methods, and after nearly 10  years of devel-
opment, its achievements are widespread throughout 
all relevant fields. Gan [116] explored a model-based 
recurrent neural network (MBRNN) for use in a fault 
diagnosis. An MBRNN can use model-based fault 
detection and isolation (FDI) solutions as a starting 
point and improve them through training by adapt-
ing them to plant nonlinearities. The application of an 
MBRNN IN in the nonlinear model of an electrome-
chanical governor used in the speed control of large 
diesel engines indicates that an MBRNN provides bet-
ter results than “black box” neural networks. Li [117] 
proposed a fault diagnosis and isolation (FDI) strategy 
based on a dynamically driven recurrent neural net-
work (DDRNN) architecture for use in  situations in 
which there are thruster/actuator failures in the satel-
lite’s attitude control system. To improve the FDI per-
formance accuracy, the proposed architecture was 
designed to consist of two DDRNNs. The first deter-
mines and diagnoses the presence of a faulty thruster 
and the second then identifies which thruster is faulty.

In recent years, owing to the powerful feature extrac-
tion and pattern recognition capabilities of deep learn-
ing, a fault diagnosis algorithm based on an RNN has 
again attracted extensive attention of scholars. Liu 
[118] proposed a novel method for a bearing fault diag-
nosis with an RNN in the form of an autoencoder. With 
this approach, multiple vibrations of the rolling bear-
ings of the next period are predicted from the previ-
ous period by means of a gated recurrent unit (GRU) 
based denoising autoencoder. Then, for the given input 
data, the reconstruction errors between the next period 
data and the output data generated by different GRU-
NP-DAEs are used to detect anomalous conditions and 
classify the fault type. Experiment results indicate that 
the proposed method achieves a satisfactory perfor-
mance with strong robustness and high classification 
accuracy.

An RNN has incomparable advantages in terms of 
prediction [119, 120], which has attracted significant 
attention in the field of deep learning-based fault diag-
nosis in recent years. Under the background of the 
large-scale and complex development of a system, an 
RNN fault diagnosis method will play an increasingly 
important role.

5 � Difficulties and Challenges of DNNs in the Field 
of Hydraulic Intelligent Fault Diagnosis

5.1 � Fault Characteristics of Complex Hydraulic System
Compared with common mechanical and electri-
cal structures, a hydraulic system used in engineer-
ing equipment is a highly non-linear system, which 
is usually complicated in structure, with an elec-
tromechanical-hydraulic coupling, and the hydrau-
lic loops intersect each other. The fault mechanisms 
and forms of the hydraulic components, such as the 
hydraulic pumps, cylinders, valves, and motors, are 
complex and diverse. Thus, a hydraulic fault diagno-
sis remains a challenge. In addition, the hydraulic sys-
tem used in engineering equipment has the following 
characteristics:

(1)	 The sealing characteristic of the hydraulic system 
structure results in its faults being concealed, less 
measurable parameters, and susceptibility to ran-
dom factors, making it difficult to obtain fault infor-
mation.

(2)	 The motion of the components, such as cylinder 
reciprocation, and the opening and closing of the 
control valves, produces a large number of excita-
tion sources, which make the hydraulic state sig-
nal demonstrate nonlinear, time-varying, and even 
impact characteristics [121].

(3)	 Owing to the fluid resistance and pressure loss, the 
vibration transmission mechanism of hydraulic oil 
is completely different from that used in rigid parts.

(4)	 The typical hydraulic faults include stagnation, 
impact, cavitation, jamming, leakage, and their 
composite forms. When a composite fault occurs, 
signals transmitted through complex channels 
overlap with each other. The mapping relationship 
between the signal characteristics and the system 
state is complex. Accordingly, it becomes more dif-
ficult to confirm the relationship between the rea-
sons for and the features of a fault [122].

(5)	 Complex hydraulic systems consist of many sub-
systems, and a single component failure may cause 
a component, subsystem, or system failure in suc-
cession. In a short time, multiple different source 
faults may occur simultaneously, and simple faults 
occurring at the same time may lead to abnormal 
functions of multiple subsystems, as well as the 
concurrency and transformation of multiple types 
of faults. Therefore, the number of fault modes will 
rise exponentially with an increase in the system 
complexity.
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5.2 � Key Problems of DNNs in Hydraulic Fault Diagnosis
To improve the diagnostic performance of a DNN in a 
complex hydraulic system further, several key problems 
need to be deeply studied, as listed in Figure 13.

5.2.1 � Expansion of Sample Set
The diagnosis capability of a DNN largely depends on 
the quality and quantity of the training samples. How-
ever, for a hydraulic system, compared with mechanical 
faults, hydraulic faults are difficult to simulate, and thus 
there are usually huge amounts of normal signals coex-
isting with a few fault signals. However, for complex pat-
tern recognition problems such as a hydraulic system 
fault diagnosis, it is necessary to base a diagnosis on large 
numbers of samples. Therefore, how to generate more 
similar samples based on limited fault samples must be 
considered. Fortunately, in a DNN, prediction and gen-
eration models, such as an AE and a GAN, can satisfy this 
requirement.

As mentioned in Section  3.2.1, an AE consists of two 
parts including an encoder and a decoder. As shown in 
Figure 14, an encoder is used to transform and compress 
the input x into low dimensional codes y. A decoder is 
applied to recover y for the original input x. Then, the 
output of decoder, x’, will be compared with x, and the 
difference between them will be minimized through 
training. Because a decoder can recover the original data, 

it can be used in a fault diagnosis to generate pseudo 
samples for the training of other deep learning models.

Similarly, as mentioned in Section  3.2.5, a GAN also 
includes two parts, a generator and a discriminator. The 
training goal is to make the samples generated by the 
generator similar to the real samples, such that the dis-
criminator cannot distinguish the real samples from 
the generated versions. Therefore, the training process 
is in fact an antagonistic process between the generator 
and discriminator. It is also a process of identifying the 
essential features of the samples. Thus, the application 
of a GAN in a fault diagnosis can also be used to gener-
ate pseudo samples to solve the problem of unbalanced 
samples.

5.2.2 � Optimization of Network Structure
(1) Reconfiguration oriented to diagnosis issue

Not all DNNs can be directly used for a fault diagno-
sis without requiring any changes, and thus some recon-
figuration measures should be studied in terms of fault 
diagnosis.

For example, a shift-invariance is an advantage of a 
CNN when applied to face recognition. It can eliminate 
the differences in faces caused by different positions and 
angles. However, for the time-frequency diagram of the 
signal, it must be able to locate the frequency precisely 
while maintaining a shift-invariance on the time axis. 
Taking the two time-frequency diagrams shown in Fig-
ure  15 as examples, in Figure  15(a), there are two fre-
quency components in the simulation signal, which are 
shown as two straight and parallel lines. It is difficult for 
a CNN to distinguish them. In Figure 15(b), a frequency 
modulated signal is shown. The shapes of the two time-
frequency lines are similar, and thus a CNN will mistake 
one for the other and take the former as the stretched 

Key problems of DNNs applied in hydraulic fault diagnosis
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Figure 14  Sample generation process based on AE
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(compressed) result of the latter. Therefore, to solve 
this type of problem, the structure of the CNN must be 
reconfigured.

(2) Control of network scale
First, to achieve a better diagnosis result, the scale of 

the issue should be matched well with that of the net-
work. If the issue is smaller than the network, it may 
cause an over-fitting. If the issue is larger than the net-
work, it may cause an under-fitting. Thus, the determi-
nation of the network scale based on the issue scale is 
extremely important.

Second, because a hydraulic fault diagnosis is usually 
a complicated pattern recognition problem, a diagnosis 
DNN is usually a large-scale network with a large number 
of neurons, and therefore a large number of parameters. 
However, for an intelligent built-in diagnostic device, its 
efficiency will be restricted by the ability and capacity of 
the hardware. Therefore, it is necessary to obtain a non-
redundant and small-scale network structure. Related 
studies can be carried out from the following aspects:

1)	The relationship between the width and depth of 
the network should be studied to find the optimal 
width-to-depth ratio. Here, the depth is the number 
of the layers and the width is the scale of a single 
layer.

2)	By analyzing the contribution of the neurons during 
the feature extraction, the less-activated neurons 

will be found, and a more simplified structure will 
be obtained.

(3) Obtain different types of fusion in a network
Four types of fusion in a network can be used, namely, 

a model fusion, signal fusion, feature fusion, and deci-
sion fusion.

1) Model fusion
For a specific problem, to achieve a better recognition 

and classification, fusing different models in one deep 
network to benefit from different models comprehen-
sively is an important method, and can be studied from 
the following aspects.

As shown in Figure 1, in a traditional intelligent diag-
nosis, a dimensionality reduction and/or sparse pro-
cessing model is often used in high dimensional data 
processing and feature selection. Its purpose is to high-
light the main characteristics and reduce the difficulty 
of a calculation as well as the consumption of comput-
ing resources. Commonly used models include linear 
models such as a PCA, an ICA, and an SVD, and non-
linear models, such as KPCA, multi-dimensional scal-
ing (MDS), and locally linear embedding (LLE).

In fact, in other pattern recognition areas, there have 
been some similar studies [123–125]. These studies 
have shown that a dimensionality reduction achieves an 
excellent performance in face recognition, and sparse 
processing is more effective in image processing and 
audio and video identification. In a previous study, 
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we tried to integrate a PCA into a CNN and achieved 
a certain effect. However, considering the nonlinear 
property of a hydraulic state signal, a nonlinear model 
may be a better choice.

For an on-line monitoring system, the precise loca-
tion of the time of the fault’s initiation, development, 
and deterioration is extremely important. In the speech 
recognition field, the most frequently researched 
hybrid acoustic models include a DBN-HMM [126] 
and a CNN-HMM [127]. Such studies have inspired 
us to combine the time-series models, such as a hid-
den Markov model (HMM), an RNN, and its variants, 
namely, long-short term memory (LSTM) and a GRU 
with a DNN, to describe how the system state changes 
during an operation. The related issues include the 
following:

①	 How to select the models based on our problem?
②	 At which layer should the models be applied and 

how can they be integrated into a DNN?
③	 How can the effect be evaluated?
④	 How can an integrated network be further 

improved?

2) Signal fusion
To provide more evidence for diagnosis, we could apply 

the following:

①	 Install different sensors at different positions of the 
hydraulic system to obtain different state signals, 
including the vibration, pressure, flow, and other 
factors.

②	 Obtain different features of the same signal by 
applying different signal transformation methods, 
such as a Fourier transform, WVD, and wavelet, to 
obtain the frequency-domain, time-frequency, and 
statistical characteristics.

Integrating such multi-source or variously formed het-
erogeneous signals into a DNN to improve the diagnosis 
reliability is an area worth studying.

3) Feature fusion
Feature fusion means the combinatorial application of 

features output from different layers.
The feature transformation process of a deep network 

is similar to that of a wavelet decomposition or an EMD, 
the decomposition of which is a multi-level separation 
and a refinement of features. For a diagnosis, all com-
ponents and features of all levels may be valuable. In the 
previous study, however, the classification of a deep net-
work, such as a CNN and an SAE, was based only on the 
output of the last feature transformation layer. The issues 
worth studying here include the following:

①	 Can the features of different layers reflect the char-
acteristics of a signal from different perspectives?

②	 What characteristics can the output of the different 
layers represent?

③	 How can multi-layer features be combinatorically 
applied to realize a more reliable hydraulic diagno-
sis?

4) Decision fusion
If used in a diagnosis, the last layer of a DNN should 

be a classifier, namely, a softmax, an SVM, a boosting, 
or a K-nearest neighbor (KNN) classifier. The following 
should be considered:

①	 In view of a specific deep structure, what type of 
classifier should be selected to match the previous 
feature extraction layer better, and what type of 
training algorithm should be designed to realize a 
joint optimization of the entire network?

②	 To improve the reliability of a diagnosis further, is 
it possible to configure several different classifiers 
in the same network to achieve a decision fusion 
of different classification results? If so, how can the 
network be trained?

All problems above regarding the optimization of a net-
work structure will correspondingly cause a re-design of 
the algorithm, including the initialization of the param-
eters, a pre-processing of the input, a selection, and an 
optimization of the activation function, among others. 
Because these problems are extremely specific, and space 
is limited, the details are not elaborated in this paper.

5.2.3 � Analysis of Diagnosis Mechanism
The purpose of an analysis regarding the diagnosis mech-
anism of a DNN is to answer the following questions:

①	 What is the layer-by-layer transformation result of a 
DNN?

②	 What is the function of each layer, each neuron, and 
its parameters?

③	 Can the transformation result of each layer be effec-
tively interpreted from the perspective of human 
cognition? Can it in turn inspire humans to have a 
deeper understanding of hydraulic faults?

④	 Can we embed human diagnostic knowledge into 
a network to realize an effective combination of 
human knowledge and machine learning?

There have been a few similar studies in other pattern 
recognition fields. For example, as shown in Figure  16, 
Zeiler et  al. [128] analyzed the layer-by-layer trans-
formation results of a CNN used for face recognition, 
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and found that the layer-by-layer extraction of a CNN 
includes the contour (outline) information and feature 
position.

Taking a CNN as an example, if it is used for a fault 
diagnosis, its input may be a time-domain signal or a 2D 
time-frequency image. A diagnostic mechanism analysis 
may be specialized as follows:

①	 What is the state (size and value) of the convolu-
tion kernels obtained through training? Can they 
be considered digital filters as previously supposed? 
If so, what features does each convolution kernel 
extract from its input? What are the similarities and 
differences between a convolution kernel and a tra-
ditional digital filter?

②	 What is the relation among the convolution ker-
nels of the same layer? Can these convolution ker-
nels extract all features of the same input? How do 
they work cooperatively? Is there any redundancy 
among the convolution results?

③	 What is the relation among the convolution kernels 
of two adjacent layers? What features does the latter 
layer extract from the output of the preceding layer?

6 � Conclusions
In this paper, the main technologies used in an intelli-
gent fault diagnosis and the research status of hydraulic 
system fault diagnosis were analyzed and summarized. 
Based on a deep analysis of the similarities of a fault diag-
nosis and other pattern recognition issues, research ideas 
regarding a hydraulic fault diagnosis based on a DNN 
were presented. Based on an overview of the research 
status of fault diagnosis using DNNs in recent years (both 
domestically and abroad), the characteristics of a com-
plex hydraulic system fault were expounded, and the key 
problems faced in the application of a DNN to realize a 
hydraulic fault diagnosis and some possible solutions 
were presented.
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