[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition

اعتبار موردنیاز: 1
تعداد صفحات: NaN صفحه (V117-V124)
زبان: en
منتشر شده در: GEOPHYSICS
دوره: 81
شماره:2
سال انتشار: 2016
نوع این مطلب: journal-article
سازمان ناشر: Society of Exploration Geophysicists
کد DOI مقاله: 10.1190/geo2015-0341.1
لینک اطلاعات کامل مقاله: http://dx.doi.org/10.1190/geo2015-0341.1
نویسندگان مقاله: Mohammad Amir Nazari Siahsar , Saman Gholtashi , Amin Roshandel Kahoo , Hosein Marvi , Alireza Ahmadifard
توجه: قبل از اقدام به دریافت مقالات ISI، حتما از تعداد صفحات و نوع مطلب اطمینان حاصل نمایید. با استفاده از لینک اطلاعات فوق، می توانید به صفحه اطلاعات این مقاله در سایت ناشر مراجعه نمایید و تعداد صفحات و... را به دقت کنترل فرمایید. پس از اطمینان به این صفحه بازگشته و مراحل خرید و دریافت فایل مقاله را انجام دهید.
برخی از مقالات رایگان می باشند و بدون خرید از سیویلیکا با کلیک بر روی لینک فوق، از طریق سایت ناشر قابل دریافت می باشند.

چکیده:

Attenuation of random noise is a major concern in seismic data processing. This kind of noise is usually characterized by random oscillation in seismic data over the entire time and frequency. We introduced and evaluated a low-rank and sparse decomposition-based method for seismic random noise attenuation. The proposed method, which is a trace by trace algorithm, starts by transforming the seismic signal into a new sparse subspace using the synchrosqueezing transform. Then, the sparse time-frequency representation (TFR) matrix is decomposed into two parts: (a) a low-rank component and (b) a sparse component using bilateral random projection. Although seismic data are not exactly low-rank in the sparse TFR domain, they can be assumed as being of semi-low-rank or approximately low-rank type. Hence, we can recover the denoised seismic signal by minimizing the mixed [Formula: see text] norms’ objective function by considering the intrinsically semilow-rank property of the seismic data and sparsity feature of random noise in the sparse TFR domain. The proposed method was tested on synthetic and real data. In the synthetic case, the data were contaminated by random noise. Denoising was carried out by means of the [Formula: see text] classical singular spectrum analysis (SSA) and [Formula: see text] deconvolution method for comparison. The [Formula: see text] deconvolution and the classical [Formula: see text] SSA method failed to properly reduce the noise and to recover the desired signal. We have also tested the proposed method on a prestack real data set from an oil field in the southwest of Iran. Through synthetic and real tests, the proposed method is determined to be an effective, amplitude preserving, and robust tool that gives superior results over classical [Formula: see text] SSA as conventional algorithm for denoising seismic data.