- [1] Afriat, S.N. (1967). The Construction of a Utility Function From Expenditure Data. International Economic Review 8, 67â77.
Paper not yet in RePEc: Add citation now
[10] Fleissig, A.R., Whitney, G.A. (2003). A New PC-Based Test for Varianâs Weak Separability Conditions. Journal of Business & Economic Statistics 21 (1), 133â144.
[11] Hanoch, G. and Rothschild, M., (1972). Testing the Assumptions of Production Theory: A Nonparametric Approach. The Journal of Political Economy 80:2, pp. 256--275.
- [12] Geweke, J. (1992). Evaluating the Accuracy of Sampling-based Approaches to Calculating Posterior Moments. In Bayesian Statistics 4 (J. M. Bernado, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Clarendon Press, Oxford, UK, 169â193.
Paper not yet in RePEc: Add citation now
[13] Geweke, J. and Keane, M. (2007). Smoothly Mixing Regressions. Journal of Econometrics 138, 252â290.
[14] Keshvari, A., & Kuosmanen, T. (2013). Stochastic Non-convex Envelopment of Data: Applying Isotonic Regression to Frontier Estimation. European Journal of Operational Research, 231(2), 481â491.
- [15] Kass, R.E., & Raftery, A.E. (1995). Bayes Factors. Journal of the American Statistical Association 90 (430), 773â795.
Paper not yet in RePEc: Add citation now
[16] Kim, S., N. Shephard, and S. Chib (1998). Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models. Review of Economic Studies 65, 361â393.
[17] Kuosmanen, T. (2008). Representation Theorem for Convex Nonparametric Least Squares. Econometrics Journal, 11(2), 308â325.
[18] Kuosmanen, T. & Kortelainen, M. (2012). Stochastic Non-smooth Envelopment of Data: Semiparametric Frontier Estimation Subject to Shape Constraints. Journal of Productivity Analysis, 38 (1), 11â28.
[2] Afriat, S. N., (1972). Efficiency Estimation of Production Functions. International Economic Review 13:3, pp. 568-598.
- [20] Norets, A. (2012). Approximation of Conditional Densities by Smooth Mixtures of Regressions, Annals of Statistics 38(3), 1733â1766.
Paper not yet in RePEc: Add citation now
[21] Parmeter, C. F. and Zelenyuk, V. (2019). Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis, Operations Research 67 (6), 1628â1658.
- [22] Raftery, A. (1995). Hypothesis Testing and Model Selection Via Posterior Simulation, in Practical Markov Chain Monte Carlo, eds. W. R. Gilks, D. J. Spieglehalter, and S. Richardson, London: Chapman and Hall, London.
Paper not yet in RePEc: Add citation now
[23] Smeulders, B., Crama, Y., Spieksma, F. C. R. (2019). Revealed Preference Theory: An Algorithmic Outlook. European Journal of Operational Research 272 (3), 1 803â815.
[24] Varian, H. (1982a). Nonparametric Methods in Demand Analysis, Economics Letters 9, 23â29.
[25] Varian, H. (1982b). The Nonparametric Approach to Demand Analysis, Econometrica 50, 945-973.
- [26] Varian. H., (1982c), Trois evaluations de lâimpact âsocialâ dâun changement de prix. Cahiers du Seminar dâEconometrie 24, 13â30.
Paper not yet in RePEc: Add citation now
[27] Varian, H. (1983a). Nonparametric Tests of Consumer Behavior, Review of Economic Studies 50, 99â110.
[28] Varian, H. (1983b). Nonparametric Tests of Models of Investor Behavior. Journal of Financial and Quantitative Analysis 18, 269â278.
[29] Varian, H. (1984). The Nonparametric Approach to Production Analysis, Econometrica 52, 579597.
[3] Aigner, D., Lovell, C.A.K., and Schmidt, P. (1977). Formulation and Estimation of Stochastic Frontier Production Function Models. Journal of Econometrics 6, 1 (1977), pp. 21--37.
[30] Varian, H. (1985). Non-parametric Analysis of Optimizing Behavior with Measurement Error. Journal of Econometrics 30, 445â458.
- [31] Verdinelli, I., & Wasserman, L. (1995). Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio. Journal of the American Statistical Association 90 (430), 614â618.
Paper not yet in RePEc: Add citation now
[32] Yagi, D., Chen, Y., Johnson, A. L., and Kuosmanen, T. (2020). Shape-Constrained KernelWeighted Least Squares: Estimating Production Functions for Chilean Manufacturing Industries. Journal of Business & Economic Statistics 38 (1), 43â54.
- [33] Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. Wiley, New York. Technical Appendix A uij|uâ(ij), θ, Ï, Ï, D â¼ N+ uÌij, s2
Paper not yet in RePEc: Add citation now
[4] Chavas, J.-P. and Cox, T. L. (1990). A Non-Parametric Analysis of Productivity: The Case of U.S. and Japanese Manufacturing. The American Economic Review 80:3 (1990), pp. 450--464.
[5] Cornwell, C., P. Schmidt, and R. Sickles (1990). Production Frontiers with Cross-Sectional and Time-series Variation in Efficiency Levels. Journal of Econometrics 46, 185â200.
- [6] Dickey, J. (1971). The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters. The Annals of Statistics 42, 204â223.
Paper not yet in RePEc: Add citation now
- [7] Du, P., Parmeter, C. F., and Racine, J. S. (2013). Nonparametric Kernel Regression With Multiple Predictors and Multiple Shape Constraints. Statistica Sinica, 23, 1347â1371.
Paper not yet in RePEc: Add citation now
[8] Echenique, F., Lee, S., Shum, S. (2011). The Money Pump as a Measure of Revealed Preference Violations. Journal of Political Economy 119 (6), 1201â1223.
[9] FaÌre, R. and Grosskopf, S., (1995). Nonparametric Tests of Regularity, Farrell efficiency, and Goodness-of-fit. Journal of Econometrics 69:2, pp. 415-425.