- Aban, I. B. and M. M. Meerschaert (2001). Shifted Hill's estimator for heavy tails. Communications in Statistics-Simulation and Computation 30 (4), 949-962.
Paper not yet in RePEc: Add citation now
- Aban, I. B. and M. M. Meerschaert (2004). Generalized least-squares estimators for the thickness of heavy tails. Journal of Statistical Planning and Inference 119 (2), 341-352.
Paper not yet in RePEc: Add citation now
- Agterberg, F. (1995). Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37 (1), 1-8.
Paper not yet in RePEc: Add citation now
- Axtell, R. L. (2001). Zipf distribution of US firm sizes. Science 293 (5536), 1818-1820.
Paper not yet in RePEc: Add citation now
- Bacro, J. N. and M. Brito (1995). Weak limiting behaviour of a simple tail Pareto-index estimator. Journal of Statistical Planning and inference 45 (1-2), 7-19.
Paper not yet in RePEc: Add citation now
- Baek, C. and V. Pipiras (2010). Estimation of parameters in heavy-tailed distribution when its second order tail parameter is known. Journal of Statistical Planning and Inference 140 (7), 1957-1967.
Paper not yet in RePEc: Add citation now
- Beirlant, J. and A. Guillou (2001). Pareto index estimation under moderate right censoring. Scandinavian Actuarial Journal 2001 (2), 111-125.
Paper not yet in RePEc: Add citation now
- Beirlant, J. and J. L. Teugels (1989). Asymptotic normality of Hill's estimator. In Extreme value theory, pp. 148-155. Springer.
Paper not yet in RePEc: Add citation now
- Beirlant, J., A. Guillou, G. Dierckx, and A. Fils-Villetard (2007). Estimation of the extreme value index and extreme quantiles under random censoring. Extremes 10 (3), 151-174.
Paper not yet in RePEc: Add citation now
- Beirlant, J., F. Figueiredo, M. I. Gomes, and B. Vandewalle (2008). Improved reduced-bias tail index and quantile estimators. Journal of Statistical Planning and Inference 138 (6), 1851-1870.
Paper not yet in RePEc: Add citation now
- Beirlant, J., G. Dierckx, A. Guillou, and C. Staaricaa (2002). On exponential representations of log-spacings of extreme order statistics. Extremes 5 (2), 157-180.
Paper not yet in RePEc: Add citation now
- Beirlant, J., G. Dierckx, and A. Guillou (2005). Estimation of the extreme value index and generalized quantile plots. Bernoulli 11 (6), 949-970.
Paper not yet in RePEc: Add citation now
- Beirlant, J., G. Dierckx, Y. Goegebeur, and G. Matthys (1999). Tail index estimation and an exponential regression model. Extremes 2 (2), 177-200.
Paper not yet in RePEc: Add citation now
- Beirlant, J., P. Vynckier, and J. L. Teugels (1996). Tail index estimation, Pareto quantile plots regression diagnostics. Journal of the American Statistical Association 91 (436), 1659-1667.
Paper not yet in RePEc: Add citation now
- Beirlant, J., P. Vynckier, and J. L. Teugels (1996a). Excess functions and estimation of the extreme-value index. Bernoulli 2 (4), 293-318.
Paper not yet in RePEc: Add citation now
Benhabib, J., A. Bisin, and M. Luo (2017). Earnings inequality and other determinants of wealth inequality. American Economic Review 107 (5), 593-97.
Benhabib, J., A. Bisin, and S. Zhu (2011). The distribution of wealth and fiscal policy in economies with finitely lived agents. Econometrica 79 (1), 123-157.
Beran, J. and D. Schell (2012). On robust tail index estimation. Computational Statistics & Data Analysis 56 (11), 3430-3443.
Beran, J., D. Schell, and M. Stehlik (2014). The harmonic moment tail index estimator: asymptotic distribution and robustness. Annals of the Institute of Statistical Mathematics 66 (1), 193-220.
Brazauskas, V. and R. Serfling (2000). Robust and efficient estimation of the tail index of a single-parameter Pareto distribution. North American Actuarial Journal 4 (4), 12-27.
Brilhante, M. F., M. I. Gomes, and D. Pestana (2013). A simple generalisation of the Hill estimator. Computational Statistics & Data Analysis 57 (1), 518-535.
- Brilhante, M.F., G.-M. P. D. (2014). The mean-of-order p extreme value index estimator revisited. In New Advances in Statistical Modeling and Application, pp. 163-175. Berlin.
Paper not yet in RePEc: Add citation now
Brito, M. and A. C. M. Freitas (2003). Limiting behaviour of a geometric-type estimator for tail indices. Insurance: Mathematics and Economics 33 (2), 211-226.
- Brito, M., L. Cavalcante, and A. C. M. Freitas (2016). Bias-corrected geometric-type estimators of the tail index. Journal of Physics A: Mathematical and Theoretical 49 (21), 214003.
Paper not yet in RePEc: Add citation now
Brzezinski, M. (2016). Robust estimation of the Pareto tail index: a Monte Carlo analysis. Empirical Economics 51 (1), 1-30.
Caeiro, F. and M. I. Gomes (2002). A class of asymptotically unbiased semiparametric estimators of the tail index. Test 11 (2), 345-364.
- Caeiro, F. and M. I. Gomes (2006). A new class of estimators of a scale second order parameter. Extremes 9 (3-4), 193-211.
Paper not yet in RePEc: Add citation now
- Caeiro, F., M. I. Gomes, and D. Pestana (2005). Direct reduction of bias of the classical Hill estimator. Revstat 3 (2), 113-136.
Paper not yet in RePEc: Add citation now
- Caeiro, F., M. I. Gomes, J. Beirlant, and T. de Wet (2016). Mean-of-order p reduced-bias extreme value index estimation under a third-order framework. Extremes 19 (4), 561-589.
Paper not yet in RePEc: Add citation now
Chaney, T. (2008). Distorted gravity: the intensive and extensive margins of international trade. American Economic Review 98 (4), 1707-1721.
- Ciuperca, G. and C. Mercadier (2010). Semi-parametric estimation for heavy tailed distributions. Extremes 13 (1), 55-87.
Paper not yet in RePEc: Add citation now
Cowell, F. A. and E. Flachaire (2007). Income distribution and inequality measurement: The problem of extreme values. Journal of Econometrics 141 (2), 1044-1072.
- Csorgo, S. and D. M. Mason (1985). Central limit theorems for sums of extreme values. In Mathematical Proceedings of the Cambridge Philosophical Society, Volume 98, pp. 547-558.
Paper not yet in RePEc: Add citation now
- Csorgo, S. and L. Viharos (1998). Estimating the tail index. In Asymptotic Methods in Probability and Statistics, pp. 833-881. Elsevier.
Paper not yet in RePEc: Add citation now
- Csorgo, S., P. Deheuvels, and D. Mason (1985). Kernel estimates of the tail index of a distribution. The Annals of Statistics 13, 1050-1077.
Paper not yet in RePEc: Add citation now
- Danielsson, J., D. W. Jansen, and C. G. De Vries (1996). The method of moments ratio estimator for the tail shape parameter. Communications in Statistics-Theory and Methods 25 (4), 711-720.
Paper not yet in RePEc: Add citation now
- Das, K. P. and S. C. Halder (2016). Understanding extreme stock trading volume by generalized Pareto distribution. The North Carolina Journal of Mathematics and Statistics 2, 45-60.
Paper not yet in RePEc: Add citation now
- Davydov, Y., V. Paulauskas, and A. Rackauskas (2000). More on p-stable convex sets in Banach spaces. Journal of Theoretical Probability 13 (1), 39-64.
Paper not yet in RePEc: Add citation now
- De Haan, L. and S. I. Resnick (1980). A simple asymptotic estimate for the index of a stable distribution. Journal of the Royal Statistical Society. Series B 42 (1), 83-87.
Paper not yet in RePEc: Add citation now
- De Haan, L. and S. Resnick (1998). On asymptotic normality of the Hill estimator. Stochastic Models 14 (4), 849-866.
Paper not yet in RePEc: Add citation now
De Haan, L. and T. T. Pereira (1999). Estimating the index of a stable distribution. Statistics & Probability Letters 41 (1), 39-55.
De Haan, L. d. and L. Peng (1998). Comparison of tail index estimators. Statistica Neerlandica 52 (1), 60-70.
- De Haan, L. F. M. (1970). On regular variation and its application to the weak convergence of sample extremes. Mathematisch Centrum, Amsterdam.
Paper not yet in RePEc: Add citation now
- Deheuvels, P., E. Haeusler, and D. M. Mason (1988). Almost sure convergence of the Hill estimator. In Mathematical Proceedings of the Cambridge Philosophical Society, Volume 104, pp. 371-381.
Paper not yet in RePEc: Add citation now
Dekkers, A. L., J. H. Einmahl, and L. De Haan (1989). A moment estimator for the index of an extreme-value distribution. The Annals of Statistics 17 (4), 1833-1855.
- Drees, H. (1995). Refined Pickands estimators of the extreme value index. The Annals of Statistics 23 (6), 2059-2080.
Paper not yet in RePEc: Add citation now
- Drees, H. (1996). Refined Pickands estimators with bias correction. Communications in Statistics-Theory and Methods 25 (4), 837-851.
Paper not yet in RePEc: Add citation now
- Drees, H. (1998). A general class of estimators of the extreme value index. Journal of Statistical Planning and Inference 66 (1), 95-112.
Paper not yet in RePEc: Add citation now
Drees, H. (1998). On smooth statistical tail functionals. Scandinavian Journal of Statistics 25 (1), 187-210.
- Dupuis, D. and M. Tsao (1998). A hybrid estimator for generalized Pareto and extreme-value distributions. Communications in Statistics-Theory and Methods 27 (4), 925-941.
Paper not yet in RePEc: Add citation now
- Dupuis, D. J. and M.-P. Victoria-Feser (2006). A robust prediction error criterion for Pareto modelling of upper tails. Canadian Journal of Statistics 34 (4), 639-658.
Paper not yet in RePEc: Add citation now
- Dupuis, D. J. and S. Morgenthaler (2002). Robust weighted likelihood estimators with an application to bivariate extreme value problems. Canadian Journal of Statistics 30 (1), 17-36.
Paper not yet in RePEc: Add citation now
- Falk, M. (1994). Efficiency of convex combinations of Pickands estimator of the extreme value index. Journal of Nonparametric Statistics 4 (2), 133-147
Paper not yet in RePEc: Add citation now
- Fan, Z. (2004). Estimation problems for distributions with heavy tails. Journal of Statistical Planning and Inference 123 (1), 13-40.
Paper not yet in RePEc: Add citation now
- Ferriere, R. and B. Cazelles (1999). Universal power laws govern intermittent rarity in communities of interacting species. Ecology 80 (5), 1505-1521.
Paper not yet in RePEc: Add citation now
- Fialova, A., J. Jureckova, and J. Picek (2004). Estimating Pareto tail index based on sample means. REVSTAT - Statistical Journal 2 (1), 75-100.
Paper not yet in RePEc: Add citation now
Finkelstein, M., H. G. Tucker, and J. Alan Veeh (2006). Pareto tail index estimation revisited. North American Actuarial Journal 10 (1), 1-10.
- Fraga Alves, M. (1995). Estimation of the tail parameter in the domain of attraction of an extremal distribution. Journal of Statistical Planning and Inference 45 (1-2), 143-173.
Paper not yet in RePEc: Add citation now
- Fraga Alves, M. (2001). A location invariant Hill-type estimator. Extremes 4 (3), 199-217.
Paper not yet in RePEc: Add citation now
- Fraga Alves, M. I., M. I. Gomes, L. de Haan, and C. Neves (2009). Mixed moment estimator and location invariant alternatives. Extremes 12 (2), 149-185.
Paper not yet in RePEc: Add citation now
- Fraga Alves, M., M. I. Gomes, and L. de Haan (2003). A new class of semiparametric estimators of the second order parameter. Portugaliae Mathematica 60 (2), 193-214.
Paper not yet in RePEc: Add citation now
Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics 1 (1), 255-294.
Gabaix, X. and A. Landier (2008). Why has CEO pay increased so much? The Quarterly Journal of Economics 123 (1), 49-100.
Gabaix, X. and R. Ibragimov (2011). Rank- 1/2: a simple way to improve the OLS estimation of tail exponents. Journal of Business & Economic Statistics 29 (1), 24-39.
Gabaix, X., P. Gopikrishnan, V. Plerou, and H. E. Stanley (2003). A theory of power-law distributions in financial market fluctuations. Nature 423 (6937), 267.
Gastwirth, J. L. (1972). The estimation of the Lorenz curve and Gini index. The Review of Economics and Statistics 54, 306-316.
Gomes, M. I. and A. Guillou (2015). Extreme value theory and statistics of univariate extremes: A review. International Statistical Review 83 (2), 263-292.
Gomes, M. I. and L. Henriques-Rodrigues (2016). Competitive estimation of the extreme value index. Statistics & Probability Letters 117, 128-135.
- Gomes, M. I. and M. J. Martins (2001). Generalizations of the Hill estimator - asymptotic versus finite sample behaviour. Journal of Statistical Planning and Inference 93 (1-2), 161-180.
Paper not yet in RePEc: Add citation now
- Gomes, M. I. and M. J. Martins (2002). Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter. Extremes 5 (1), 5-31.
Paper not yet in RePEc: Add citation now
- Gomes, M. I. and M. J. Martins (2004). Bias reduction and explicit semiparametric estimation of the tail index. Journal of Statistical Planning and Inference 124 (2), 361-378.
Paper not yet in RePEc: Add citation now
- Gomes, M. I. and O. Oliveira (2003). Maximum likelihood revisited under a semi-parametric context-estimation of the tail index. Journal of Statistical Computation and Simulation 73 (4), 285-301.
Paper not yet in RePEc: Add citation now
Gomes, M. I., C. Miranda, and C. Viseu (2007). Reduced-bias tail index estimation and the Jackknife methodology. Statistica Neerlandica 61 (2), 243-270.
- Gomes, M. I., F. Caeiro, and F. Figueiredo (2004). Bias reduction of a tail index estimator through an external estimation of the second-order parameter. Statistics 38 (6), 497-510.
Paper not yet in RePEc: Add citation now
- Gomes, M. I., F. Figueiredo, and S. Mendonca (2005). Asymptotically best linear unbiased tail estimators under a second-order regular variation condition. Journal of Statistical Planning and Inference 134 (2), 409-433.
Paper not yet in RePEc: Add citation now
- Gomes, M. I., H. Pereira, and M. C. Miranda (2005). Revisiting the role of the Jackknife methodology in the estimation of a positive tail index. Communications in Statistics-Theory and Methods 34 (2), 319-335.
Paper not yet in RePEc: Add citation now
- Gomes, M. I., L. Henriques-Rodrigues, and B. Manjunath (2016). Mean-oforder-p location-invariant extreme value index estimation. Revstat 14 (3), 273-296.
Paper not yet in RePEc: Add citation now
- Gomes, M. I., M. J. Martins, and M. Neves (2000). Alternatives to a semiparametric estimator of parameters of rare events - the Jackknife methodology. Extremes 3 (3), 207-229.
Paper not yet in RePEc: Add citation now
- Gomes, M. I., M. J. Martins, and M. Neves (2002). Generalized Jackknife semi-parametric estimators of the tail index. Portugaliae Mathematica 59 (4), 393-408.
Paper not yet in RePEc: Add citation now
- Gomes, M. I., M. J. Martins, and M. Neves (2007). Improving second order reduced bias extreme value index estimation. Revstat 5 (2), 177-207.
Paper not yet in RePEc: Add citation now
- Groeneboom, P., H. Lopuhaa, and P. De Wolf (2003). Kernel-type estimators for the extreme value index. The Annals of Statistics 31 (6), 1956-1995.
Paper not yet in RePEc: Add citation now
- Haeusler, E. and J. L. Teugels (1985). On asymptotic normality of Hill's estimator for the exponent of regular variation. The Annals of Statistics 13 (1), 743-756.
Paper not yet in RePEc: Add citation now
- Hall, P. (1982). On some simple estimates of an exponent of regular variation. Journal of the Royal Statistical Society. Series B (Methodological) 44 (1), 37-42.
Paper not yet in RePEc: Add citation now
- Hall, P. and A. Welsh (1985). Adaptive estimates of parameters of regular variation. The Annals of Statistics 13, 331-341.
Paper not yet in RePEc: Add citation now
- Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The Annals of Statistics 3 (5), 1163-1174.
Paper not yet in RePEc: Add citation now
Hinloopen, J. and C. Van Marrewijk (2012). Power laws and comparative advantage. Applied Economics 44 (12), 1483-1507.
- Hosking, J. R. M. and J. R. Wallis (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (3), 339-349.
Paper not yet in RePEc: Add citation now
- Huebner, F., D. Liu, and J. Fernandez (1998). Queueing performance comparison of traffic models for internet traffic. In Global Telecommunications Conference, 1998. GLOBECOM 1998. The Bridge to Global Integration. IEEE, Volume 1, pp. 471-476. IEEE.
Paper not yet in RePEc: Add citation now
Huisman, R., K. G. Koedijk, C. J. M. Kool, and F. Palm (2001). Tail index estimates in small samples. Journal of Business & Economic Statistics 19 (2), 208-216.
Husler, J., D. Li, and S. Muller (2006). Weighted least squares estimation of the extreme value index. Statistics & Probability Letters 76 (9), 920-930.
Jureckova, J. (2000). Test of tails based on extreme regression quantiles. Statistics & Probability Letters 49 (1), 53-61.
- Jureckova, J. and J. Picek (2001). A class of tests on the tail index. Extremes 4 (2), 165-183.
Paper not yet in RePEc: Add citation now
- Jureckova, J. and J. Picek (2004). Estimates of the tail index based on nonparametric tests. In Theory and Applications of Recent Robust Methods, pp. 141-152. Springer.
Paper not yet in RePEc: Add citation now
Kaizoji, T. (2003). Scaling behavior in land markets. Physica A: Statistical Mechanics and its Applications 326 (1-2), 256-264.
- Kang, S. and J. Song (2017). Parameter and quantile estimation for the generalized Pareto distribution in peaks over threshold framework. Journal of the Korean Statistical Society 46 (4), 487-501.
Paper not yet in RePEc: Add citation now
- Knight, K. (2007). A simple modification of the Hill estimator with applications to robustness and bias reduction. Unpublished paper: Statistics Department, University of Toronto.
Paper not yet in RePEc: Add citation now
- Kratz, M. and S. I. Resnick (1996). The qq-estimator and heavy tails. Stochastic Models 12 (4), 699-724.
Paper not yet in RePEc: Add citation now
- LePage, R., M. Woodroofe, and J. Zinn (1981). Convergence to a stable distribution via order statistics. The Annals of Probability 9 (4), 624-632.
Paper not yet in RePEc: Add citation now
- Li, J., Z. Peng, and S. Nadarajah (2008). A class of unbiased location invariant Hill-type estimators for heavy tailed distributions. Electronic Journal of Statistics 2, 829-847.
Paper not yet in RePEc: Add citation now
Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business 36, 394-419.
- Mason, D. M. (1982). Laws of large numbers for sums of extreme values. The Annals of Probability 10 (3), 754-764.
Paper not yet in RePEc: Add citation now
- McElroy, T. (2007). Tail index estimation for parametric families using log moments. Research Report Series (Statistics Nr. 2007-2).
Paper not yet in RePEc: Add citation now
- McElroy, T. and D. N. Politis (2007). Moment-based tail index estimation. Journal of Statistical Planning and Inference 137 (4), 1389-1406.
Paper not yet in RePEc: Add citation now
- Meerschaert, M. M. and H.-P. Scheffler (1998). A simple robust estimation method for the thickness of heavy tails. Journal of Statistical Planning and Inference 71 (1), 19-34.
Paper not yet in RePEc: Add citation now
- Mittnik, S. and S. T. Rachev (1993). Modeling asset returns with alternative stable distributions. Econometric Reviews 12 (3), 261-330.
Paper not yet in RePEc: Add citation now
- Muller, S. and K. Rubach (2009). Smooth tail-index estimation. Journal of Statistical Computation and Simulation 79 (9), 1155-1167.
Paper not yet in RePEc: Add citation now
Muller, U. K. and Y. Wang (2017). Fixed-k asymptotic inference about tail properties. Journal of the American Statistical Association 112 (519), 1334-1343.
- Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications 9 (1), 141-142.
Paper not yet in RePEc: Add citation now
- Newman, M. E. (2005). Power laws, Pareto distributions and Zipf's law. Contemporary physics 46 (5), 323-351.
Paper not yet in RePEc: Add citation now
Nordhaus, W. D. (2012). Economic policy in the face of severe tail events. Journal of Public Economic Theory 14 (2), 197-219.
Nuyts, J. (2010). Inference about the tail of a distribution: Improvement on the Hill estimator. International Journal of Mathematics and Mathematical Sciences 2010, 1-16.
Ogwang, T. (2011). Power laws in top wealth distributions: Evidence from Canada. Empirical Economics 41 (2), 473-486.
- Pareto, V. (1897). Cours de'conomie politique. Lausanne, Rouge.
Paper not yet in RePEc: Add citation now
- Paulauskas, V. (2003). A new estimator for a tail index. Acta Applicandae Mathematica 79, 55-67.
Paper not yet in RePEc: Add citation now
- Paulauskas, V. and M. Vaiciulis (2011). Several modifications of DPR estimator of the tail index. Lithuanian Mathematical Journal 51 (1), 36-50.
Paper not yet in RePEc: Add citation now
- Paulauskas, V. and M. Vaiciulis (2012). Estimation of the tail index in the max-aggregation scheme. Lithuanian Mathematical Journal 52 (3), 297-315.
Paper not yet in RePEc: Add citation now
- Paulauskas, V. and M. Vaiciulis (2013). On an improvement of Hill and some other estimators. Lithuanian Mathematical Journal 53 (3), 336-355.
Paper not yet in RePEc: Add citation now
Paulauskas, V. and M. Vaiciulis (2017). A class of new tail index estimators. Annals of the Institute of Statistical Mathematics 69 (2), 461-487.
- Paulauskas, V. and M. Vaiciulis (2017). Comparison of the several parameterized estimators for the positive extreme value index. Journal of Statistical Computation and Simulation 87 (7), 1342-1362.
Paper not yet in RePEc: Add citation now
Peng, L. (1998). Asymptotically unbiased estimators for the extreme-value index. Statistics & Probability Letters 38 (2), 107-115.
- Pickands III, J. (1975). Statistical inference using extreme order statistics. The Annals of Statistics 3 (1), 119-131.
Paper not yet in RePEc: Add citation now
- Pisarenko, V. and D. Sornette (2003). Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution. Pure and Applied Geophysics 160 (12), 2343-2364.
Paper not yet in RePEc: Add citation now
- Politis, D. N. (2002). A new approach on estimation of the tail index. Comptes Rendus Mathematique 335 (3), 279-282.
Paper not yet in RePEc: Add citation now
Qi, Y. (2010). On the tail index of a heavy tailed distribution. Annals of the Institute of Statistical Mathematics 62 (2), 277-298.
- Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43 (3/4), 353-360.
Paper not yet in RePEc: Add citation now
Rosen, K. T. and M. Resnick (1980). The size distribution of cities: an examination of the Pareto law and primacy. Journal of Urban Economics 8 (2), 165-186.
- Santos, P. A., M. Alves, and M. I. Gomes (2006). Peaks over random threshold methodology for tail index and high quantile estimation. Revstat, 227-247.
Paper not yet in RePEc: Add citation now
Schultze, J. and J. Steinebach (1996). On least squares estimates of an exponential tail coefficient. Statistics & Risk Modeling 14 (4), 353-372.
- Seekell, D. A. and M. L. Pace (2011). Does the Pareto distribution adequately describe the size-distribution of lakes? Limnology and Oceanography 56 (1), 350-356.
Paper not yet in RePEc: Add citation now
- Segers, J. (2001). Residual estimators. Journal of Statistical Planning and Inference 98 (1-2), 15-27.
Paper not yet in RePEc: Add citation now
- Segers, J. (2005). Generalized Pickands estimators for the extreme value index. Journal of Statistical Planning and Inference 128 (2), 381-396.
Paper not yet in RePEc: Add citation now
- Simon, H. A. and C. P. Bonini (1958). The size distribution of business firms. The American Economic Review 48 (4), 607-617.
Paper not yet in RePEc: Add citation now
- Smith, R. L. (1987). Estimating tails of probability distributions. The Annals of Statistics 15, 1174-1207.
Paper not yet in RePEc: Add citation now
Soo, K. T. (2005). Zipf's law for cities: A cross-country investigation. Regional science and urban Economics 35 (3), 239-263.
Toda, A. A. (2012). The double power law in income distribution: Explanations and evidence. Journal of Economic Behavior & Organization 84 (1), 364-381.
Toda, A. A. and K. Walsh (2015). The double power law in consumption and implications for testing euler equations. Journal of Political Economy 123 (5), 1177-1200.
- Tripathi, Y. M., S. Kumar, and C. Petropoulos (2014). Improved estimators for parameters of a Pareto distribution with a restricted scale. Statistical Methodology 18, 1-13.
Paper not yet in RePEc: Add citation now
- Vaiciulis, M. (2009). An estimator of the tail index based on increment ratio statistics. Lithuanian Mathematical Journal 49 (2), 222-233.
Paper not yet in RePEc: Add citation now
- Vaiciulis, M. (2012). Asymptotic properties of generalized DPR statistic. Lithuanian Mathematical Journal 52 (1), 95-110.
Paper not yet in RePEc: Add citation now
- van Zyl, J. M. (2015). Estimation of the shape parameter of a generalized Pareto distribution based on a transformation to Pareto distributed variables. Journal of Statistical Theory and Practice 9 (1), 171-183.
Paper not yet in RePEc: Add citation now
Vandewalle, B., J. Beirlant, A. Christmann, and M. Hubert (2007). A robust estimator for the tail index of Pareto-type distributions. Computational Statistics & Data Analysis 51 (12), 6252-6268.
- Victoria-Feser, M.-P. and E. Ronchetti (1994). Robust methods for personal income distribution models. Canadian Journal of Statistics 22 (2), 247-258.
Paper not yet in RePEc: Add citation now
- Viharos, L. (1999). Weighted least-squares estimators of tail indices. Probability and Mathematical Statistics 19 (2), 249-265.
Paper not yet in RePEc: Add citation now
Wang, C. and G. Chen (2016). A new hybrid estimation method for the generalized Pareto distribution. Communications in Statistics-Theory and Methods 45 (14), 4285-4294.
Weiss, L. (1971). Asymptotic inference about a density function at an end of its range. Naval Research Logistics 18 (1), 111-114.
- Yun, S. (2000). A class of Pickands-type estimators for the extreme value index. Journal of Statistical Planning and Inference 83 (1), 113-124.
Paper not yet in RePEc: Add citation now
- Zhang, J. (2007). Likelihood moment estimation for the generalized Pareto distribution. Australian & New Zealand Journal of Statistics 49 (1), 69-77.
Paper not yet in RePEc: Add citation now
- Zhang, J. (2010). Improving on estimation for the generalized Pareto distribution. Technometrics 52 (3), 335-339.
Paper not yet in RePEc: Add citation now
- Zhang, J. and M. A. Stephens (2009). A new and efficient estimation method for the generalized Pareto distribution. Technometrics 51 (3), 316-325.
Paper not yet in RePEc: Add citation now
- Zhong, J. and X. Zhao (2012). Modeling complicated behavior of stock prices using discrete self-excited multifractal process. Systems Engineering Procedia 3, 110-118.
Paper not yet in RePEc: Add citation now
- Zipf, G. K. (1941). National unity and disunity; the nation as a bio-social organism. Bloomington, Indiana: Principia Press.
Paper not yet in RePEc: Add citation now
- Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley, Reading, Massachusetts.
Paper not yet in RePEc: Add citation now